scispace - formally typeset
Search or ask a question
Author

Alexander Lachmann

Bio: Alexander Lachmann is an academic researcher from Icahn School of Medicine at Mount Sinai. The author has contributed to research in topics: Gene regulatory network & Repurposing. The author has an hindex of 25, co-authored 51 publications receiving 7395 citations. Previous affiliations of Alexander Lachmann include Columbia University & Mount Sinai Health System.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: A significant update to one of the tools in this domain called Enrichr, a comprehensive resource for curated gene sets and a search engine that accumulates biological knowledge for further biological discoveries is presented.
Abstract: Enrichment analysis is a popular method for analyzing gene sets generated by genome-wide experiments. Here we present a significant update to one of the tools in this domain called Enrichr. Enrichr currently contains a large collection of diverse gene set libraries available for analysis and download. In total, Enrichr currently contains 180 184 annotated gene sets from 102 gene set libraries. New features have been added to Enrichr including the ability to submit fuzzy sets, upload BED files, improved application programming interface and visualization of the results as clustergrams. Overall, Enrichr is a comprehensive resource for curated gene sets and a search engine that accumulates biological knowledge for further biological discoveries. Enrichr is freely available at: http://amp.pharm.mssm.edu/Enrichr.

6,201 citations

Journal ArticleDOI
01 Mar 2021
TL;DR: Enrichr as discussed by the authors is a gene set search engine that enables the querying of hundreds of thousands of annotated gene sets Enrichr uniquely integrates knowledge from many high-profile projects to provide synthesized information about mammalian genes and gene sets.
Abstract: Profiling samples from patients, tissues, and cells with genomics, transcriptomics, epigenomics, proteomics, and metabolomics ultimately produces lists of genes and proteins that need to be further analyzed and integrated in the context of known biology Enrichr (Chen et al, 2013; Kuleshov et al, 2016) is a gene set search engine that enables the querying of hundreds of thousands of annotated gene sets Enrichr uniquely integrates knowledge from many high-profile projects to provide synthesized information about mammalian genes and gene sets The platform provides various methods to compute gene set enrichment, and the results are visualized in several interactive ways This protocol provides a summary of the key features of Enrichr, which include using Enrichr programmatically and embedding an Enrichr button on any website © 2021 Wiley Periodicals LLC Basic Protocol 1: Analyzing lists of differentially expressed genes from transcriptomics, proteomics and phosphoproteomics, GWAS studies, or other experimental studies Basic Protocol 2: Searching Enrichr by a single gene or key search term Basic Protocol 3: Preparing raw or processed RNA-seq data through BioJupies in preparation for Enrichr analysis Basic Protocol 4: Analyzing gene sets for model organisms using modEnrichr Basic Protocol 5: Using Enrichr in Geneshot Basic Protocol 6: Using Enrichr in ARCHS4 Basic Protocol 7: Using the enrichment analysis visualization Appyter to visualize Enrichr results Basic Protocol 8: Using the Enrichr API Basic Protocol 9: Adding an Enrichr button to a website

884 citations

Journal ArticleDOI
TL;DR: The ChEA database allowed us to reconstruct an initial network of transcription factors connected based on shared overlapping targets and binding site proximity, and it is shown how by combining the Connectivity Map with ChEA, it can rank pairs of compounds to be used to target specific transcription factor activity in cancer cells.
Abstract: Motivation: Experiments such as ChIP-chip, ChIP-seq, ChIP-PET and DamID (the four methods referred herein as ChIP-X) are used to profile the binding of transcription factors to DNA at a genome-wide scale. Such experiments provide hundreds to thousands of potential binding sites for a given transcription factor in proximity to gene coding regions. Results: In order to integrate data from such studies and utilize it for further biological discovery, we collected interactions from such experiments to construct a mammalian ChIP-X database. The database contains 189 933 interactions, manually extracted from 87 publications, describing the binding of 92 transcription factors to 31 932 target genes. We used the database to analyze mRNA expression data where we perform gene-list enrichment analysis using the ChIP-X database as the prior biological knowledge gene-list library. The system is delivered as a web-based interactive application called ChIP Enrichment Analysis (ChEA). With ChEA, users can input lists of mammalian gene symbols for which the program computes over-representation of transcription factor targets from the ChIP-X database. The ChEA database allowed us to reconstruct an initial network of transcription factors connected based on shared overlapping targets and binding site proximity. To demonstrate the utility of ChEA we present three case studies. We show how by combining the Connectivity Map (CMAP) with ChEA, we can rank pairs of compounds to be used to target specific transcription factor activity in cancer cells. Availability: The ChEA software and ChIP-X database is freely available online at: http://amp.pharm.mssm.edu/lib/chea.jsp Contact: avi.maayan/at/mssm.edu Supplementary information: Supplementary data are available at Bioinformatics online.

778 citations

Journal ArticleDOI
TL;DR: A fraction of tumors is identified with aberrant activity of druggable oncoproteins despite a lack of mutations, and vice versa, and in vitro assays confirmed that VIPER-inferred protein activity outperformed mutational analysis in predicting sensitivity to targeted inhibitors.
Abstract: Identifying the multiple dysregulated oncoproteins that contribute to tumorigenesis in a given patient is crucial for developing personalized treatment plans. However, accurate inference of aberrant protein activity in biological samples is still challenging as genetic alterations are only partially predictive and direct measurements of protein activity are generally not feasible. To address this problem we introduce and experimentally validate a new algorithm, virtual inference of protein activity by enriched regulon analysis (VIPER), for accurate assessment of protein activity from gene expression data. We used VIPER to evaluate the functional relevance of genetic alterations in regulatory proteins across all samples in The Cancer Genome Atlas (TCGA). In addition to accurately infer aberrant protein activity induced by established mutations, we also identified a fraction of tumors with aberrant activity of druggable oncoproteins despite a lack of mutations, and vice versa. In vitro assays confirmed that VIPER-inferred protein activity outperformed mutational analysis in predicting sensitivity to targeted inhibitors.

576 citations

Journal ArticleDOI
TL;DR: A high-throughput processing infrastructure and search database (ARCHS4) that provides processed RNA-seq data for 187,946 publicly available mouse and human samples to support exploration and reuse is developed.
Abstract: RNA sequencing (RNA-seq) is the leading technology for genome-wide transcript quantification. However, publicly available RNA-seq data is currently provided mostly in raw form, a significant barrier for global and integrative retrospective analyses. ARCHS4 is a web resource that makes the majority of published RNA-seq data from human and mouse available at the gene and transcript levels. For developing ARCHS4, available FASTQ files from RNA-seq experiments from the Gene Expression Omnibus (GEO) were aligned using a cloud-based infrastructure. In total 187,946 samples are accessible through ARCHS4 with 103,083 mouse and 84,863 human. Additionally, the ARCHS4 web interface provides intuitive exploration of the processed data through querying tools, interactive visualization, and gene pages that provide average expression across cell lines and tissues, top co-expressed genes for each gene, and predicted biological functions and protein–protein interactions for each gene based on prior knowledge combined with co-expression.

428 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The latest version of STRING more than doubles the number of organisms it covers, and offers an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input.
Abstract: Proteins and their functional interactions form the backbone of the cellular machinery. Their connectivity network needs to be considered for the full understanding of biological phenomena, but the available information on protein-protein associations is incomplete and exhibits varying levels of annotation granularity and reliability. The STRING database aims to collect, score and integrate all publicly available sources of protein-protein interaction information, and to complement these with computational predictions. Its goal is to achieve a comprehensive and objective global network, including direct (physical) as well as indirect (functional) interactions. The latest version of STRING (11.0) more than doubles the number of organisms it covers, to 5090. The most important new feature is an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input. For the enrichment analysis, STRING implements well-known classification systems such as Gene Ontology and KEGG, but also offers additional, new classification systems based on high-throughput text-mining as well as on a hierarchical clustering of the association network itself. The STRING resource is available online at https://string-db.org/.

10,584 citations

Journal ArticleDOI
TL;DR: An analytical strategy for integrating scRNA-seq data sets based on common sources of variation is introduced, enabling the identification of shared populations across data sets and downstream comparative analysis.
Abstract: Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.

7,741 citations

Journal ArticleDOI
TL;DR: A biologist-oriented portal that provides a gene list annotation, enrichment and interactome resource and enables integrated analysis of multi-OMICs datasets, Metascape is an effective and efficient tool for experimental biologists to comprehensively analyze and interpret OMICs-based studies in the big data era.
Abstract: A critical component in the interpretation of systems-level studies is the inference of enriched biological pathways and protein complexes contained within OMICs datasets Successful analysis requires the integration of a broad set of current biological databases and the application of a robust analytical pipeline to produce readily interpretable results Metascape is a web-based portal designed to provide a comprehensive gene list annotation and analysis resource for experimental biologists In terms of design features, Metascape combines functional enrichment, interactome analysis, gene annotation, and membership search to leverage over 40 independent knowledgebases within one integrated portal Additionally, it facilitates comparative analyses of datasets across multiple independent and orthogonal experiments Metascape provides a significantly simplified user experience through a one-click Express Analysis interface to generate interpretable outputs Taken together, Metascape is an effective and efficient tool for experimental biologists to comprehensively analyze and interpret OMICs-based studies in the big data era

6,282 citations

Journal ArticleDOI
TL;DR: A significant update to one of the tools in this domain called Enrichr, a comprehensive resource for curated gene sets and a search engine that accumulates biological knowledge for further biological discoveries is presented.
Abstract: Enrichment analysis is a popular method for analyzing gene sets generated by genome-wide experiments. Here we present a significant update to one of the tools in this domain called Enrichr. Enrichr currently contains a large collection of diverse gene set libraries available for analysis and download. In total, Enrichr currently contains 180 184 annotated gene sets from 102 gene set libraries. New features have been added to Enrichr including the ability to submit fuzzy sets, upload BED files, improved application programming interface and visualization of the results as clustergrams. Overall, Enrichr is a comprehensive resource for curated gene sets and a search engine that accumulates biological knowledge for further biological discoveries. Enrichr is freely available at: http://amp.pharm.mssm.edu/Enrichr.

6,201 citations

Journal ArticleDOI
19 May 2011-Nature
TL;DR: Using a quantitative model, the first genome-scale prediction of synthesis rates of mRNAs and proteins is obtained and it is found that the cellular abundance of proteins is predominantly controlled at the level of translation.
Abstract: Gene expression is a multistep process that involves the transcription, translation and turnover of messenger RNAs and proteins. Although it is one of the most fundamental processes of life, the entire cascade has never been quantified on a genome-wide scale. Here we simultaneously measured absolute mRNA and protein abundance and turnover by parallel metabolic pulse labelling for more than 5,000 genes in mammalian cells. Whereas mRNA and protein levels correlated better than previously thought, corresponding half-lives showed no correlation. Using a quantitative model we have obtained the first genome-scale prediction of synthesis rates of mRNAs and proteins. We find that the cellular abundance of proteins is predominantly controlled at the level of translation. Genes with similar combinations of mRNA and protein stability shared functional properties, indicating that half-lives evolved under energetic and dynamic constraints. Quantitative information about all stages of gene expression provides a rich resource and helps to provide a greater understanding of the underlying design principles.

5,635 citations