scispace - formally typeset
Search or ask a question
Author

Alexander M. Korsunsky

Other affiliations: University of New Mexico, University of Newcastle, HSM  ...read more
Bio: Alexander M. Korsunsky is an academic researcher from University of Oxford. The author has contributed to research in topics: Residual stress & Eigenstrain. The author has an hindex of 43, co-authored 476 publications receiving 8888 citations. Previous affiliations of Alexander M. Korsunsky include University of New Mexico & University of Newcastle.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the hardness of a number of coated systems has been measured using a variety of experimental techniques ranging from traditional macro-Vickers indentation to ultra-low-load depth-sensing nanoindentation.
Abstract: The hardness of a number of coated systems has been measured using a variety of experimental techniques ranging from traditional macro-Vickers indentation to ultra-low-load depth-sensing nanoindentation. This has allowed the hardness response to be measured over scales ranging from those less than the coating thickness, where a coating-dominated response is expected, to much more macroscopic scales where system behaviour is dominated by the substrate. The objective has been to construct a mathematical description of the hardness performance of coated systems which well describes the behaviour over this wide range of scales. Previous attempts at such quantitative descriptions have usually involved models focusing on some particular deformation mechanism (e.g. plasticity, elastic response or fracture). In contrast, this paper presents a new approach to analysing hardness data essentially using dimensionless parameters containing descriptors equally applicable to either plasticity- or fracture-dominated behaviour with all scales measured relative to the coating thickness. The model shows an excellent fit to a wide range of experimental data. Furthermore, once the fit has been made, not only can some deductions be made regarding dominant deformation mechanisms, but the model allows predictions of the contact response of other coated systems to be made.

539 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce the concept of Dislocation Influence Functions for Plane and Ring Dipole Influence Functions (DIF) and derive the solution of Axi-Symmetric Crack Problems.
Abstract: Preface. 1. Introduction to Fracture Mechanics. 2. Distributed Dislocation Fundamentals. 3. Further Topics in Plane Crack Problems. 4. Interface Cracks. 5. Solution of Axi-Symmetric Crack Problems. 6. Three-Dimensional Cracks: An Introduction. 7. Three-Dimensional Cracks: Further Concepts. 8. Concluding Remarks. A: Dislocation Influence Functions. B: Numerical Solution of SIEs with Cauchy Kernel. C: Plane and Ring Dipole Influence Functions. D: Contour Integral and Kernel Function. References. Index.

417 citations

Journal ArticleDOI
05 Jul 2013-Science
TL;DR: Three-dimensional imaging of the generation and subsequent evolution of coherent acoustic phonons on the picosecond time scale within a single gold nanocrystal by means of an x-ray free-electron laser is reported, providing insights into the physics of this phenomenon.
Abstract: Key insights into the behavior of materials can be gained by observing their structure as they undergo lattice distortion. Laser pulses on the femtosecond time scale can be used to induce disorder in a "pump-probe" experiment with the ensuing transients being probed stroboscopically with femtosecond pulses of visible light, x-rays, or electrons. Here we report three-dimensional imaging of the generation and subsequent evolution of coherent acoustic phonons on the picosecond time scale within a single gold nanocrystal by means of an x-ray free-electron laser, providing insights into the physics of this phenomenon. Our results allow comparison and confirmation of predictive models based on continuum elasticity theory and molecular dynamics simulations.

271 citations

Journal ArticleDOI
TL;DR: In this article, 3D-printed CF-PEEK composites were compared with their cast counterparts and the characterization of composite thermal properties in the range 25-300°C revealed that 3-D-print composites manifest 25-30% lower thermal conductivity than cast composites.

162 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: A review of the emerging research on additive manufacturing of metallic materials is provided in this article, which provides a comprehensive overview of the physical processes and the underlying science of metallurgical structure and properties of the deposited parts.

4,192 citations

Book
01 Jan 2008
TL;DR: Nonaka and Takeuchi as discussed by the authors argue that there are two types of knowledge: explicit knowledge, contained in manuals and procedures, and tacit knowledge, learned only by experience, and communicated only indirectly, through metaphor and analogy.
Abstract: How have Japanese companies become world leaders in the automotive and electronics industries, among others? What is the secret of their success? Two leading Japanese business experts, Ikujiro Nonaka and Hirotaka Takeuchi, are the first to tie the success of Japanese companies to their ability to create new knowledge and use it to produce successful products and technologies. In The Knowledge-Creating Company, Nonaka and Takeuchi provide an inside look at how Japanese companies go about creating this new knowledge organizationally. The authors point out that there are two types of knowledge: explicit knowledge, contained in manuals and procedures, and tacit knowledge, learned only by experience, and communicated only indirectly, through metaphor and analogy. U.S. managers focus on explicit knowledge. The Japanese, on the other hand, focus on tacit knowledge. And this, the authors argue, is the key to their success--the Japanese have learned how to transform tacit into explicit knowledge. To explain how this is done--and illuminate Japanese business practices as they do so--the authors range from Greek philosophy to Zen Buddhism, from classical economists to modern management gurus, illustrating the theory of organizational knowledge creation with case studies drawn from such firms as Honda, Canon, Matsushita, NEC, Nissan, 3M, GE, and even the U.S. Marines. For instance, using Matsushita's development of the Home Bakery (the world's first fully automated bread-baking machine for home use), they show how tacit knowledge can be converted to explicit knowledge: when the designers couldn't perfect the dough kneading mechanism, a software programmer apprenticed herself withthe master baker at Osaka International Hotel, gained a tacit understanding of kneading, and then conveyed this information to the engineers. In addition, the authors show that, to create knowledge, the best management style is neither top-down nor bottom-up, but rather what they call "middle-up-down," in which the middle managers form a bridge between the ideals of top management and the chaotic realities of the frontline. As we make the turn into the 21st century, a new society is emerging. Peter Drucker calls it the "knowledge society," one that is drastically different from the "industrial society," and one in which acquiring and applying knowledge will become key competitive factors. Nonaka and Takeuchi go a step further, arguing that creating knowledge will become the key to sustaining a competitive advantage in the future. Because the competitive environment and customer preferences changes constantly, knowledge perishes quickly. With The Knowledge-Creating Company, managers have at their fingertips years of insight from Japanese firms that reveal how to create knowledge continuously, and how to exploit it to make successful new products, services, and systems.

3,668 citations