scispace - formally typeset
Search or ask a question
Author

Alexander Mamishev

Bio: Alexander Mamishev is an academic researcher from University of Washington. The author has contributed to research in topics: Dielectric & Pressboard. The author has an hindex of 30, co-authored 117 publications receiving 4666 citations. Previous affiliations of Alexander Mamishev include Texas A&M University & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: To the authors' knowledge, WISP is the first fully programmable computing platform that can operate using power transmitted from a long-range (UHF) RFID reader and communicate arbitrary multibit data in a single response packet.
Abstract: This paper presents the wireless identification and sensing platform (WISP), which is a programmable battery-free sensing and computational platform designed to explore sensor-enhanced radio frequency identification (RFID) applications. WISP uses a 16-bit ultralow-power microcontroller to perform sensing and computation while exclusively operating from harvested RF energy. Sensors that have successfully been integrated into the WISP platform to date include temperature, ambient light, rectified voltage, and orientation. The microcontroller encodes measurements into an electronic product code (EPC) Class 1 Generation 1 compliant ID and dynamically computes the required 16-bit cyclical redundancy checking (CRC). Finally, WISP emulates the EPC protocol to communicate the ID to the RFID reader. To the authors' knowledge, WISP is the first fully programmable computing platform that can operate using power transmitted from a long-range (UHF) RFID reader and communicate arbitrary multibit data in a single response packet.

917 citations

Journal ArticleDOI
08 Nov 2004
TL;DR: Capacitive, inductive, dielectric, piezoacoustic, chemical, biological, and microelectromechanical interdigital sensors and transducers are brought under one umbrella to discuss fabrication techniques, modeling of sensor parameters, application examples, and directions of future research.
Abstract: This review paper focuses on interdigital electrodes-a geometric structure encountered in a wide variety of sensor and transducer designs. Physical and chemical principles behind the operation of these devices vary so much across different fields of science and technology that the common features present in all devices are often overlooked. This paper attempts to bring under one umbrella capacitive, inductive, dielectric, piezoacoustic, chemical, biological, and microelectromechanical interdigital sensors and transducers. The paper also provides historical perspective, discusses fabrication techniques, modeling of sensor parameters, application examples, and directions of future research.

535 citations

Journal ArticleDOI
TL;DR: The authors provides an overview of the classic moisture equilibrium curves and their history and provides useful information on the relationships among them and their validity, as well as their relationship among different types of equilibrium curves.
Abstract: This paper provides an overview of the classic moisture equilibrium curves and their history and provides useful information on the relationships among them and their validity.

349 citations

Journal ArticleDOI
TL;DR: The WISP project aims to augment RFID tags with sensors so that tags can also send sensed data to the readers, and calls these augmented tags wisps.
Abstract: The Wireless Identification and Sensing Platform (WISP) project explores an approach to provide power for sensor networks, based on passive radio-frequency-identification technology. In traditional passive RFID systems, ambient high-power readers interrogate battery-free devices, called tags, that modulate the interrogating signal to communicate a unique identifier to the reader. The WISP project aims to augment RFID tags with sensors so that tags can also send sensed data to the readers. We call these augmented tags wisps. Basing wisps on RFID has some immediate advantages. RFID tags communicate to ambient readers over distances of up to eight meters. Solutions compatible with RFID standards might therefore find quicker acceptance and see faster improvement than other solutions.

288 citations

Book ChapterDOI
17 Sep 2006
TL;DR: This paper reports the first fully programmable computing platform that can operate using power transmitted from a long-range (UHF) RFID Reader and communicate arbitrary, multi-bit data in response to a single RFID reader poll event.
Abstract: We present WISP, a wireless, battery-free platform for sensing and computation that is powered and read by a standards compliant Ultra-High Frequency (UHF) RFID reader. To the reader, the WISP appears to be an ordinary RFID tag. The WISP platform includes a general-purpose programmable flash microcontroller and implements the bi-directional communication primitives required by the Electronic Product Code (EPC) RFID standard, which allows it to communicate arbitrary sensor data via an EPC RFID reader by dynamically changing the ID it presents to the reader. For each 64 bit “packet,” the WISP's microcontroller dynamically computes the 16-bit CRC that the EPC standard requires of valid packets. Because the WISP device can control all bits of the presented ID, 64 bits of sensor data can be communicated with a single RFID read event. As an example of the system in operation, we present 13 hours of continuous-valued light-level data measured by the device. All the measurements were made using power harvested from the RFID reader. No battery, and no wired connections (for either power or data) were used. As far as we are aware, this paper reports the first fully programmable computing platform that can operate using power transmitted from a long-range (UHF) RFID reader and communicate arbitrary, multi-bit data in response to a single RFID reader poll event.

224 citations


Cited by
More filters
Book ChapterDOI
01 Jan 1997
TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.
Abstract: The boundary layer equations for plane, incompressible, and steady flow are $$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

Journal ArticleDOI
TL;DR: Various aspects of energy harvesting sensor systems- architecture, energy sources and storage technologies and examples of harvesting-based nodes and applications are surveyed and the implications of recharge opportunities on sensor node operation and design of sensor network solutions are discussed.
Abstract: Sensor networks with battery-powered nodes can seldom simultaneously meet the design goals of lifetime, cost, sensing reliability and sensing and transmission coverage. Energy-harvesting, converting ambient energy to electrical energy, has emerged as an alternative to power sensor nodes. By exploiting recharge opportunities and tuning performance parameters based on current and expected energy levels, energy harvesting sensor nodes have the potential to address the conflicting design goals of lifetime and performance. This paper surveys various aspects of energy harvesting sensor systems- architecture, energy sources and storage technologies and examples of harvesting-based nodes and applications. The study also discusses the implications of recharge opportunities on sensor node operation and design of sensor network solutions.

1,870 citations

Journal Article
TL;DR: In this paper, two major figures in adaptive control provide a wealth of material for researchers, practitioners, and students to enhance their work through the information on many new theoretical developments, and can be used by mathematical control theory specialists to adapt their research to practical needs.
Abstract: This book, written by two major figures in adaptive control, provides a wealth of material for researchers, practitioners, and students. While some researchers in adaptive control may note the absence of a particular topic, the book‘s scope represents a high-gain instrument. It can be used by designers of control systems to enhance their work through the information on many new theoretical developments, and can be used by mathematical control theory specialists to adapt their research to practical needs. The book is strongly recommended to anyone interested in adaptive control.

1,814 citations

Journal ArticleDOI
03 Sep 2008
TL;DR: The principles and state-of-art in motion-driven miniature energy harvesters are reviewed and trends, suitable applications, and possible future developments are discussed.
Abstract: Energy harvesting generators are attractive as inexhaustible replacements for batteries in low-power wireless electronic devices and have received increasing research interest in recent years. Ambient motion is one of the main sources of energy for harvesting, and a wide range of motion-powered energy harvesters have been proposed or demonstrated, particularly at the microscale. This paper reviews the principles and state-of-art in motion-driven miniature energy harvesters and discusses trends, suitable applications, and possible future developments.

1,781 citations

Journal ArticleDOI
TL;DR: A circuit model is presented along with a derivation of key system concepts, such as frequency splitting, the maximum operating distance (critical coupling), and the behavior of the system as it becomes undercoupled, including the introduction of key figures of merit.
Abstract: Wireless power technology offers the promise of cutting the last cord, allowing users to seamlessly recharge mobile devices as easily as data are transmitted through the air. Initial work on the use of magnetically coupled resonators for this purpose has shown promising results. We present new analysis that yields critical insight into the design of practical systems, including the introduction of key figures of merit that can be used to compare systems with vastly different geometries and operating conditions. A circuit model is presented along with a derivation of key system concepts, such as frequency splitting, the maximum operating distance (critical coupling), and the behavior of the system as it becomes undercoupled. This theoretical model is validated against measured data and shows an excellent average coefficient of determination of 0.9875. An adaptive frequency tuning technique is demonstrated, which compensates for efficiency variations encountered when the transmitter-to-receiver distance and/or orientation are varied. The method demonstrated in this paper allows a fixed-load receiver to be moved to nearly any position and/or orientation within the range of the transmitter and still achieve a near-constant efficiency of over 70% for a range of 0-70 cm.

1,630 citations