scispace - formally typeset
Search or ask a question
Author

Alexander Moeller

Bio: Alexander Moeller is an academic researcher from Boston Children's Hospital. The author has contributed to research in topics: Exhaled nitric oxide & Asthma. The author has an hindex of 27, co-authored 92 publications receiving 3391 citations. Previous affiliations of Alexander Moeller include University of Western Australia & University of Zurich.


Papers
More filters
Journal ArticleDOI
TL;DR: These data show that lumacaftor in combination with ivacaftors provided a benefit for patients with cystic fibrosis homozygous for the Phe508del CFTR mutation.
Abstract: A total of 1108 patients underwent randomization and received study drug. The mean baseline FEV 1 was 61% of the predicted value. In both studies, there were significant improvements in the primary end point in both lumacaftor–ivacaftor dose groups; the difference between active treatment and placebo with respect to the mean absolute improvement in the percentage of predicted FEV 1 ranged from 2.6 to 4.0 percentage points (P<0.001), which corresponded to a mean relative treatment difference of 4.3 to 6.7% (P<0.001). Pooled analyses showed that the rate of pulmonary exacerbations was 30 to 39% lower in the lumacaftor–ivacaftor groups than in the placebo group; the rate of events leading to hospitalization or the use of intravenous antibiotics was lower in the lumacaftor–ivacaftor groups as well. The incidence of adverse events was generally similar in the lumacaftor–ivacaftor and placebo groups. The rate of discontinuation due to an adverse event was 4.2% among patients who received lumacaftor–ivacaftor versus 1.6% among those who received placebo. CONCLUSIONS These data show that lumacaftor in combination with ivacaftor provided a benefit for patients with cystic fibrosis homozygous for the Phe508del CFTR mutation. (Funded by Vertex Pharmaceuticals and others; TRAFFIC and TRANSPORT ClinicalTrials.gov numbers, NCT01807923 and NCT01807949.)

1,355 citations

Journal ArticleDOI
01 Sep 2004-Thorax
TL;DR: FeNO variability is largely determined by epithelial NOS2 expression with little contribution from other isoforms, suggesting that non-inducible NOS systems have important roles in determining airway reactivity, regulating inflammation, and might contribute significantly to NO measured in exhaled breath.
Abstract: Background: The fractional concentration of nitric oxide (NO) in exhaled breath (FeNO) is increased in asthma. There is a general assumption that NO synthase (NOS) 2 in epithelium is the main source of NO in exhaled breath. However, there is no direct evidence to support the assumption and data from animal models suggest that non-inducible NOS systems have important roles in determining airway reactivity, regulating inflammation, and might contribute significantly to NO measured in exhaled breath. Methods: Bronchial epithelial cells were obtained from healthy, atopic, and asthmatic children by non-bronchoscopic brushing. Exhaled NO (FeNO) was measured directly using a fast response chemiluminescence NO analyser. RNA was extracted from the epithelial cells and real time polymerase chain reaction was used to determine the expression of NOS isoenzymes. NOS2 was examined in macrophages and epithelial cells by immunohistochemistry. Results: NOS1 mRNA was not detectable. NOS3 mRNA was detected in 36 of 43 samples at lower levels than NOS2 mRNA which was detectable in all samples. The median FeNO was 15.5 ppb (95% CI 10 to 18.1). There was a significant correlation between FeNO and NOS2 expression (R = 0.672, p<0.001). All epithelial cells exhibited NOS2 staining, whereas staining in the macrophages was variable and not related to phenotype. Conclusions: Only NOS2 expression was associated with FeNO in respiratory epithelial cells obtained from children (R = 0.672; p<0.001). This suggests that FeNO variability is largely determined by epithelial NOS2 expression with little contribution from other isoforms.

248 citations

Journal ArticleDOI
TL;DR: Three patients with homozygous mutations in the integrin α(3) gene that were associated with disrupted basement-membrane structures and compromised barrier functions in kidney, lung, and skin had a multiorgan disorder that included congenital nephrotic syndrome, interstitial lung disease, and epidermolysis bullosa.
Abstract: Integrin α(3) is a transmembrane integrin receptor subunit that mediates signals between the cells and their microenvironment. We identified three patients with homozygous mutations in the integrin α(3) gene that were associated with disrupted basement-membrane structures and compromised barrier functions in kidney, lung, and skin. The patients had a multiorgan disorder that included congenital nephrotic syndrome, interstitial lung disease, and epidermolysis bullosa. The renal and respiratory features predominated, and the lung involvement accounted for the lethal course of the disease. Although skin fragility was mild, it provided clues to the diagnosis.

197 citations

Journal ArticleDOI
TL;DR: Azithromycin pre-treatment reduces RV replication in CF bronchial epithelial cells, possibly through the amplification of the antiviral response mediated by the IFN pathway, and reduces rhinovirus load in CF Bronchial cells,possibly through the induction of the interferon pathway.
Abstract: Virus-associated pulmonary exacerbations, often associated with rhinoviruses (RVs), contribute to cystic fibrosis (CF) morbidity. Currently, there are only a few therapeutic options to treat virus-induced CF pulmonary exacerbations. The macrolide antibiotic azithromycin has antiviral properties in human bronchial epithelial cells. We investigated the potential of azithromycin to induce antiviral mechanisms in CF bronchial epithelial cells. Primary bronchial epithelial cells from CF and control children were infected with RV after azithromycin pre-treatment. Viral RNA, interferon (IFN), IFN-stimulated gene and pattern recognition receptor expression were measured by real-time quantitative PCR. Live virus shedding was assessed by assaying the 50% tissue culture infective dose. Pro-inflammatory cytokine and IFN-β production were evaluated by ELISA. Cell death was investigated by flow cytometry. RV replication was increased in CF compared with control cells. Azithromycin reduced RV replication seven-fold in CF cells without inducing cell death. Furthermore, azithromycin increased RV-induced pattern recognition receptor, IFN and IFN-stimulated gene mRNA levels. While stimulating antiviral responses, azithromycin did not prevent virus-induced pro-inflammatory responses. Azithromycin pre-treatment reduces RV replication in CF bronchial epithelial cells, possibly through the amplification of the antiviral response mediated by the IFN pathway. Clinical studies are needed to elucidate the potential of azithromycin in the management and prevention of RV-induced CF pulmonary exacerbations.

139 citations

Journal ArticleDOI
TL;DR: This review summarizes the present status and continuous improvements of the principal on-line breath analysis methods and evaluates obstacles for their wider application.
Abstract: On-line analysis of exhaled breath offers insight into a person's metabolism without the need for sample preparation or sample collection. Due to its noninvasive nature and the possibility to sample continuously, the analysis of breath has great clinical potential. The unique features of this technology make it an attractive candidate for applications in medicine, beyond the task of diagnosis. We review the current methodologies for on-line breath analysis, discuss current and future applications, and critically evaluate challenges and pitfalls such as the need for standardization. Special emphasis is given to the use of the technology in diagnosing respiratory diseases, potential niche applications, and the promise of breath analysis for personalized medicine. The analytical methodologies used range from very small and low-cost chemical sensors, which are ideal for continuous monitoring of disease status, to optical spectroscopy and state-of-the-art, high-resolution mass spectrometry. The latter can be utilized for untargeted analysis of exhaled breath, with the capability to identify hitherto unknown molecules. The interpretation of the resulting big data sets is complex and often constrained due to a limited number of participants. Even larger data sets will be needed for assessing reproducibility and for validation of biomarker candidates. In addition, molecular structures and quantification of compounds are generally not easily available from on-line measurements and require complementary measurements, for example, a separation method coupled to mass spectrometry. Furthermore, a lack of standardization still hampers the application of the technique to screen larger cohorts of patients. This review summarizes the present status and continuous improvements of the principal on-line breath analysis methods and evaluates obstacles for their wider application.

120 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Recommendations to develop evidence-based guidelines for the interpretation of Fe(NO) measurements that incorporate evidence that has accumulated over the past decade are provided.
Abstract: Background: Measurement of fractional nitric oxide (NO) concentration in exhaled breath (FeNO) is a quantitative, noninvasive, simple, and safe method of measuring airway inflammation that provides a complementary tool to other ways of assessing airways disease, including asthma. While FeNO measurement has been standardized, there is currently no reference guideline for practicing health care providers to guide them in the appropriate use and interpretation of FeNO in clinical practice.Purpose: To develop evidence-based guidelines for the interpretation of FeNO measurements that incorporate evidence that has accumulated over the past decade.Methods: We created a multidisciplinary committee with expertise in the clinical care, clinical science, or basic science of airway disease and/or NO. The committee identified important clinical questions, synthesized the evidence, and formulated recommendations. Recommendations were developed using pragmatic systematic reviews of the literature and the GRADE approach....

2,012 citations

Journal ArticleDOI
TL;DR: This work presents a meta-analysis of the literature on infant and young children Pulmonary Function Testing using a probabilistic, apples-to- apples model, which shows clear trends in prognosis and in particular in cases of high morbidity and mortality after the second vaccination.
Abstract: Nicole Beydon, Stephanie D. Davis, Enrico Lombardi, Julian L. Allen, Hubertus G. M. Arets, Paul Aurora, Hans Bisgaard, G. Michael Davis, Francine M. Ducharme, Howard Eigen, Monika Gappa, Claude Gaultier, Per M. Gustafsson, Graham L. Hall, Zoltán Hantos, Michael J. R. Healy, Marcus H. Jones, Bent Klug, Karin C. Lødrup Carlsen, Sheila A. McKenzie, François Marchal, Oscar H. Mayer, Peter J. F. M. Merkus, Mohy G. Morris, Ellie Oostveen, J. Jane Pillow, Paul C. Seddon, Michael Silverman, Peter D. Sly, Janet Stocks, Robert S. Tepper, Daphna Vilozni, and Nicola M. Wilson, on behalf of the American Thoracic Society/ European Respiratory Society Working Group on Infant and Young Children Pulmonary Function Testing

1,057 citations

Journal ArticleDOI
TL;DR: Elexacaftor-tezacaft or-ivacaft or was efficacious in patients with cystic fibrosis with Phe508del-minimal function genotypes, in whom previous CFTR modulator regimens were ineffective.
Abstract: Background Cystic fibrosis is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, and nearly 90% of patients have at least one ...

1,029 citations

Journal ArticleDOI
TL;DR: The fact that (R)-roscovitine has undergone extensive preclinical safety/pharmacology studies, and phase I and II clinical trials in cancer patients, encourages its repurposing as a CF drug candidate.
Abstract: (R)-Roscovitine, a pharmacological inhibitor of kinases, is currently in phase II clinical trial as a drug candidate for the treatment of cancers, Cushing's disease and rheumatoid arthritis. We here review the data that support the investigation of (R)-roscovitine as a potential therapeutic agent for the treatment of cystic fibrosis (CF). (R)-Roscovitine displays four independent properties that may favorably combine against CF: (1) it partially protects F508del-CFTR from proteolytic degradation and favors its trafficking to the plasma membrane; (2) by increasing membrane targeting of the TRPC6 ion channel, it rescues acidification in phagolysosomes of CF alveolar macrophages (which show abnormally high pH) and consequently restores their bactericidal activity; (3) its effects on neutrophils (induction of apoptosis), eosinophils (inhibition of degranulation/induction of apoptosis) and lymphocytes (modification of the Th17/Treg balance in favor of the differentiation of anti-inflammatory lymphocytes and reduced production of various interleukins, notably IL-17A) contribute to the resolution of inflammation and restoration of innate immunity, and (4) roscovitine displays analgesic properties in animal pain models. The fact that (R)-roscovitine has undergone extensive preclinical safety/pharmacology studies, and phase I and II clinical trials in cancer patients, encourages its repurposing as a CF drug candidate.

876 citations

Journal ArticleDOI
TL;DR: Large well-designed randomised controlled trials with clear descriptions of patients are needed to improve the present recommendations on the treatment of these common syndromes.
Abstract: There is poor agreement on definitions of different phenotypes of preschool wheezing disorders. The present Task Force proposes to use the terms episodic (viral) wheeze to describe children who wheeze intermittently and are well between episodes, and multiple-trigger wheeze for children who wheeze both during and outside discrete episodes. Investigations are only needed when in doubt about the diagnosis. Based on the limited evidence available, inhaled short-acting beta(2)-agonists by metered-dose inhaler/spacer combination are recommended for symptomatic relief. Educating parents regarding causative factors and treatment is useful. Exposure to tobacco smoke should be avoided; allergen avoidance may be considered when sensitisation has been established. Maintenance treatment with inhaled corticosteroids is recommended for multiple-trigger wheeze; benefits are often small. Montelukast is recommended for the treatment of episodic (viral) wheeze and can be started when symptoms of a viral cold develop. Given the large overlap in phenotypes, and the fact that patients can move from one phenotype to another, inhaled corticosteroids and montelukast may be considered on a trial basis in almost any preschool child with recurrent wheeze, but should be discontinued if there is no clear clinical benefit. Large well-designed randomised controlled trials with clear descriptions of patients are needed to improve the present recommendations on the treatment of these common syndromes.

789 citations