scispace - formally typeset
Search or ask a question
Author

Alexander N. Glazer

Bio: Alexander N. Glazer is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Phycobilisome & Phycocyanin. The author has an hindex of 71, co-authored 208 publications receiving 21068 citations. Previous affiliations of Alexander N. Glazer include Pasteur Institute & University of California, Los Angeles.


Papers
More filters
Journal ArticleDOI
27 Feb 1987-Science
TL;DR: The data support the idea of a "beneficial" role for bilirubin as a physiological, chain-breaking antioxidant.
Abstract: Bilirubin, the end product of heme catabolism in mammals, is generally regarded as a potentially cytotoxic, lipid-soluble waste product that needs to be excreted. However, it is here that bilirubin, at micromolar concentrations in vitro, efficiently scavenges peroxyl radicals generated chemically in either homogeneous solution or multilamellar liposomes. The antioxidant activity of bilirubin increases as the experimental concentration of oxygen is decreased from 20% (that of normal air) to 2% (physiologically relevant concentration). Furthermore, under 2% oxygen, in liposomes, bilirubin suppresses the oxidation more than alpha-tocopherol, which is regarded as the best antioxidant of lipid peroxidation. The data support the idea of a "beneficial" role for bilirubin as a physiological, chain-breaking antioxidant.

3,299 citations

Journal ArticleDOI
08 Oct 2010-Science
TL;DR: Humans must modify their behavior or risk causing irreversible changes to life on Earth, as the damage done by humans to the nitrogen economy of the planet will persist for decades, possibly centuries, if active intervention and careful management strategies are not initiated.
Abstract: Atmospheric reactions and slow geological processes controlled Earth's earliest nitrogen cycle, and by ~2.7 billion years ago, a linked suite of microbial processes evolved to form the modern nitrogen cycle with robust natural feedbacks and controls. Over the past century, however, the development of new agricultural practices to satisfy a growing global demand for food has drastically disrupted the nitrogen cycle. This has led to extensive eutrophication of fresh waters and coastal zones as well as increased inventories of the potent greenhouse gas nitrous oxide (N(2)O). Microbial processes will ultimately restore balance to the nitrogen cycle, but the damage done by humans to the nitrogen economy of the planet will persist for decades, possibly centuries, if active intervention and careful management strategies are not initiated.

1,882 citations

Journal ArticleDOI
TL;DR: Results show that 1 mol of Alb-BR can scavenge 2 mol of peroxyl radicals and that small amounts of plasma bilirubin are sufficient to prevent oxidation of albumin-bound fatty acids as well as of the protein itself, indicating a role for Alb- BR as a physiological antioxidant in plasma and the extravascular space.
Abstract: Bilirubin, when bound to human albumin and at concentrations present in normal human plasma, protects albumin-bound linoleic acid from peroxyl radical-induced oxidation in vitro. Initially, albumin-bound bilirubin (Alb-BR) is oxidized at the same rate as peroxyl radicals are formed and biliverdin is produced stoichiometrically as the oxidation product. On an equimolar basis, Alb-BR successfully competes with uric acid for peroxyl radicals but is less efficient in scavenging these radicals than vitamin C. These results show that 1 mol of Alb-BR can scavenge 2 mol of peroxyl radicals and that small amounts of plasma bilirubin are sufficient to prevent oxidation of albumin-bound fatty acids as well as of the protein itself. The data indicate a role for Alb-BR as a physiological antioxidant in plasma and the extravascular space.

738 citations

Journal ArticleDOI
TL;DR: The synthesis, proof of structure, and the absorption and fluorescence properties of two new unsymmetrical cyanine dyes, thiazole orange dimer and oxazole yellow dimer are reported, which form highly fluorescent complexes with double-stranded DNA (dsDNA) with greater than 1000-fold fluorescence enhancement.
Abstract: The synthesis, proof of structure, and the absorption and fluorescence properties of two new unsymmetrical cyanine dyes, thiazole orange dimer (TOTO; 1,1'-(4,4,7,7-tetramethyl-4,7- diazaundecamethylene)-bis-4-[3-methyl-2,3-dihydro-(benzo-1,3-thiaz ole)-2- methylidene]-quinolinium tetraiodide) and oxazole yellow dimer (YOYO; an analogue of TOTO with a benzo-1,3-oxazole in place of the benzo-1,3-thiazole) are reported. TOTO and YOYO are virtually non-fluorescent in solution, but form highly fluorescent complexes with double-stranded DNA (dsDNA), up to a maximum dye to DNA bp ratio of 1:4, with greater than 1000-fold fluorescence enhancement. The dsDNA-TOTO (lambda max 513 nm; lambda maxF 532 nm) and dsDNA-YOYO (lambda max 489 nm; lambda maxF 509 nm) complexes are completely stable to electrophoresis on agarose and acrylamide gels. Mixtures of restriction fragments pre-labeled with ethidium dimer (EthD; lambda maxF 616 nm) and those pre-labeled with either TOTO or YOYO were separated by electrophoresis. Laser excitation at 488 nm and simultaneous confocal fluorescence detection at 620-750 nm (dsDNA-EthD emission) and 500-565 nm (dsDNA-TOTO or dsDNA-YOYO emission) allowed sensitive detection, quantitation, and accurate sizing of restriction fragments ranging from 600 to 24,000 bp. The limit of detection of dsDNA-TOTO and YOYO complexes with a laser-excited confocal fluorescence gel scanner for a band 5-mm wide on a 1-mm thick agarose gel was 4 picograms, about 500-fold lower than attainable by conventional staining with ethidium bromide.

680 citations

Patent
06 Dec 1985
TL;DR: In this article, the authors proposed a method for diagnosis of genetic abnormalities or other genetic conditions which can be readily automated and is used to determine the presence or absence of a target sequence in a sample of denatured nucleic acid.
Abstract: The invention provides a method for diagnosis of genetic abnormalities or other genetic conditions which can be readily automated. The method is used to determine the presence or absence of a target sequence in a sample of denatured nucleic acid and entails hybridizing the sample with a probe complementary to a diagnostic portion of the target sequence (the diagnostic probe), and with a probe complementary to a nucleotide sequence contiguous with the diagnostic portion (the contiguous probe), under conditions wherein the diagnostic probe remains bound substantially only to the sample nucleic acid containing the target sequence. The diagnostic probe and contiguous probe are then covalently attached to yield a target probe which is complementary to the target sequence, and the probes which are not attached are removed. In the preferred mode, one of the probes is labeled so that the presence or absence of the target sequence can then be tested by melting the sample nucleic acid-target probe duplex, eluting the dissociated target probe, and testing for the label. In another embodiment, the testing is accomplished without first removing probes not covalently attached, by attaching a hook to the probe that is not labeled, so that the labeled target probe may be recovered by catching the hook. In both instances, the presence of both the diagnostic probe and the contiguous probe is required for the label to appear in the assay. The above method is then applied to the detection of genetic diseases.

649 citations


Cited by
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Book ChapterDOI
01 Jan 1969

10,262 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Abstract: Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.

8,542 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection and these nanometer-sized conjugates are water-soluble and biocompatible.
Abstract: Highly luminescent semiconductor quantum dots (zinc sulfide-capped cadmium selenide) have been covalently coupled to biomolecules for use in ultrasensitive biological detection. In comparison with organic dyes such as rhodamine, this class of luminescent labels is 20 times as bright, 100 times as stable against photobleaching, and one-third as wide in spectral linewidth. These nanometer-sized conjugates are water-soluble and biocompatible. Quantum dots that were labeled with the protein transferrin underwent receptor-mediated endocytosis in cultured HeLa cells, and those dots that were labeled with immunomolecules recognized specific antibodies or antigens.

7,393 citations