scispace - formally typeset
Search or ask a question
Author

Alexander Poltorak

Bio: Alexander Poltorak is an academic researcher from Tufts University. The author has contributed to research in topics: Innate immune system & TLR4. The author has an hindex of 29, co-authored 62 publications receiving 18415 citations. Previous affiliations of Alexander Poltorak include University of Texas Southwestern Medical Center & Scripps Research Institute.


Papers
More filters
Journal ArticleDOI
11 Dec 1998-Science
TL;DR: The mammalian Tlr4 protein has been adapted primarily to subserve the recognition of LPS and presumably transduces the LPS signal across the plasma membrane.
Abstract: Mutations of the gene Lps selectively impede lipopolysaccharide (LPS) signal transduction in C3H/HeJ and C57BL/10ScCr mice, rendering them resistant to endotoxin yet highly susceptible to Gram-negative infection. The codominant Lpsd allele of C3H/HeJ mice was shown to correspond to a missense mutation in the third exon of the Toll-like receptor-4 gene (Tlr4), predicted to replace proline with histidine at position 712 of the polypeptide chain. C57BL/10ScCr mice are homozygous for a null mutation of Tlr4. Thus, the mammalian Tlr4 protein has been adapted primarily to subserve the recognition of LPS and presumably transduces the LPS signal across the plasma membrane. Destructive mutations of Tlr4 predispose to the development of Gram-negative sepsis, leaving most aspects of immune function intact.

7,553 citations

Journal Article
TL;DR: A single present-day representative of the Toll-like proteins in Drosophila has striking cytoplasmic domain homology to mammalian Tlrs within the cluster that embraces TLRs 1, 2, 4, and 6, which would suggest that an ancestral (pre-vertebrate) Tlr may have adopted a pro-inflammatory function 500 million years ago.
Abstract: We describe three novel genes, encoding members of the Toll-like receptor (Tlr) family (TLR7, TLR8, and TLR9). These Tlr family members, unlike others reported to date, were identified within a genomic database. TLR7 and TLR8 each have three exons, two of which have coding function, and lie in close proximity to one another at Xp22, alongside a pseudogene. The remaining gene (TLR9) resides at 3p21.3 (in linkage with the MyD88 gene), and is expressed in at least two splice forms, one of which is monoexonic and one of which is biexonic, the latter encoding a protein with 57 additional amino acids at the N-terminus. The novel Tlrs comprise a cluster as nearest phylogenetic neighbors. Combining all sequence data related to Toll-like receptors, we have drawn several inferences concerning the phylogeny of vertebrate and invertebrate Tlrs. According to our best estimates, mammalian TLRs 1 and 6 diverged from a common mammalian ancestral gene 95 million years ago. TLR4, which encodes the endotoxin sensor in present-day mammals, emerged as a distinct entity 180 million years ago. TLRs 3 and 5 diverged from a common ancestral gene approximately 150 million years ago, as did Tlr7 and Tlr8. Very likely, fewer Tlrs existed during early vertebrate evolution: at most three or four were transmitted with the primordial vertebrate line. Phylogenetic data that we have adduced in the course of this work also suggest the existence of a Drosophila equivalent of MyD88, and indicate that the plasma membrane protein SIGIRR is close functional relative of MyD88 in mammals. Finally, a single present-day representative of the Toll-like proteins in Drosophila has striking cytoplasmic domain homology to mammalian Tlrs within the cluster that embraces TLRs 1, 2, 4, and 6. This would suggest that an ancestral (pre-vertebrate) Tlr may have adopted a pro-inflammatory function 500 million years ago.

504 citations

Journal ArticleDOI
TL;DR: The results uncover a form of caspase-8–mediated pyroptosis and suggest a hypothesis for the increased sensitivity of humans to Yersinia infection compared with the rodent reservoir.
Abstract: Cell death and inflammation are intimately linked during Yersinia infection. Pathogenic Yersinia inhibits the MAP kinase TGFβ-activated kinase 1 (TAK1) via the effector YopJ, thereby silencing cytokine expression while activating caspase-8–mediated cell death. Here, using Yersinia pseudotuberculosis in corroboration with costimulation of lipopolysaccharide and (5Z)-7-Oxozeaenol, a small-molecule inhibitor of TAK1, we show that caspase-8 activation during TAK1 inhibition results in cleavage of both gasdermin D (GSDMD) and gasdermin E (GSDME) in murine macrophages, resulting in pyroptosis. Loss of GsdmD delays membrane rupture, reverting the cell-death morphology to apoptosis. We found that the Yersinia-driven IL-1 response arises from asynchrony of macrophage death during bulk infections in which two cellular populations are required to provide signal 1 and signal 2 for IL-1α/β release. Furthermore, we found that human macrophages are resistant to YopJ-mediated pyroptosis, with dampened IL-1β production. Our results uncover a form of caspase-8–mediated pyroptosis and suggest a hypothesis for the increased sensitivity of humans to Yersinia infection compared with the rodent reservoir.

480 citations

Journal ArticleDOI
TL;DR: It is shown that the species-dependent discrimination between intact LPS and tetra-acyl LPS partial structures is fully attributable to the species origin of Toll-like receptor 4 (Tlr4), an essential membrane-spanning component of the mammalian LPS sensor.
Abstract: Some mammalian species show an ability to discriminate between different lipopolysaccharide (LPS) partial structures (for example, lipid A and its congener LA-14-PP, which lacks secondary acyl chains), whereas others do not. Using a novel genetic complementation system involving the transduction of immortalized macrophages from genetically unresponsive C3H/HeJ mice, we now have shown that the species-dependent discrimination between intact LPS and tetra-acyl LPS partial structures is fully attributable to the species origin of Toll-like receptor 4 (Tlr4), an essential membrane-spanning component of the mammalian LPS sensor. Because Tlr4 interprets the chemical structure of an LPS molecule, we conclude that LPS must achieve close physical proximity with Tlr4 in the course of signal transduction.

439 citations


Cited by
More filters
Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations

Journal ArticleDOI
TL;DR: Microbial recognition by Toll-like receptors helps to direct adaptive immune responses to antigens derived from microbial pathogens to distinguish infectious nonself from noninfectious self.
Abstract: ▪ Abstract The innate immune system is a universal and ancient form of host defense against infection. Innate immune recognition relies on a limited number of germline-encoded receptors. These receptors evolved to recognize conserved products of microbial metabolism produced by microbial pathogens, but not by the host. Recognition of these molecular structures allows the immune system to distinguish infectious nonself from noninfectious self. Toll-like receptors play a major role in pathogen recognition and initiation of inflammatory and immune responses. Stimulation of Toll-like receptors by microbial products leads to the activation of signaling pathways that result in the induction of antimicrobial genes and inflammatory cytokines. In addition, stimulation of Toll-like receptors triggers dendritic cell maturation and results in the induction of costimulatory molecules and increased antigen-presenting capacity. Thus, microbial recognition by Toll-like receptors helps to direct adaptive immune responses ...

8,041 citations

Journal ArticleDOI
TL;DR: Rapid progress that has recently improved the understanding of the molecular mechanisms that mediate TLR signalling is reviewed.
Abstract: One of the mechanisms by which the innate immune system senses the invasion of pathogenic microorganisms is through the Toll-like receptors (TLRs), which recognize specific molecular patterns that are present in microbial components. Stimulation of different TLRs induces distinct patterns of gene expression, which not only leads to the activation of innate immunity but also instructs the development of antigen-specific acquired immunity. Here, we review the rapid progress that has recently improved our understanding of the molecular mechanisms that mediate TLR signalling.

7,906 citations

Journal ArticleDOI
11 Dec 1998-Science
TL;DR: The mammalian Tlr4 protein has been adapted primarily to subserve the recognition of LPS and presumably transduces the LPS signal across the plasma membrane.
Abstract: Mutations of the gene Lps selectively impede lipopolysaccharide (LPS) signal transduction in C3H/HeJ and C57BL/10ScCr mice, rendering them resistant to endotoxin yet highly susceptible to Gram-negative infection. The codominant Lpsd allele of C3H/HeJ mice was shown to correspond to a missense mutation in the third exon of the Toll-like receptor-4 gene (Tlr4), predicted to replace proline with histidine at position 712 of the polypeptide chain. C57BL/10ScCr mice are homozygous for a null mutation of Tlr4. Thus, the mammalian Tlr4 protein has been adapted primarily to subserve the recognition of LPS and presumably transduces the LPS signal across the plasma membrane. Destructive mutations of Tlr4 predispose to the development of Gram-negative sepsis, leaving most aspects of immune function intact.

7,553 citations