scispace - formally typeset
Search or ask a question
Author

Alexander Rothenberger

Bio: Alexander Rothenberger is an academic researcher from King Abdullah University of Science and Technology. The author has contributed to research in topics: Crystal structure & Adsorption. The author has an hindex of 22, co-authored 132 publications receiving 4736 citations. Previous affiliations of Alexander Rothenberger include Northwestern University & Heidelberg University.


Papers
More filters
Journal ArticleDOI
30 Jan 2015-Science
TL;DR: An antisolvent vapor-assisted crystallization approach is reported that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters, which enabled a detailed characterization of their optical and charge transport characteristics.
Abstract: The fundamental properties and ultimate performance limits of organolead trihalide MAPbX3 (MA = CH3NH3(+); X = Br(-) or I(-)) perovskites remain obscured by extensive disorder in polycrystalline MAPbX3 films. We report an antisolvent vapor-assisted crystallization approach that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters. These large single crystals enabled a detailed characterization of their optical and charge transport characteristics. We observed exceptionally low trap-state densities on the order of 10(9) to 10(10) per cubic centimeter in MAPbX3 single crystals (comparable to the best photovoltaic-quality silicon) and charge carrier diffusion lengths exceeding 10 micrometers. These results were validated with density functional theory calculations.

3,939 citations

Journal ArticleDOI
TL;DR: In this paper, surface tension was exploited to direct the growth of monocrystalline films of perovskites (AMX3), where A = CH3NH3+ or MA; M = Pb2+, Sn2+; X = Br−, I−) on the solution surface.
Abstract: The exciting intrinsic properties discovered in single crystals of metal halide perovskites still await their translation into optoelectronic devices. The poor understanding and control of the crystallization process of these materials are current bottlenecks retarding the shift toward single-crystal-based optoelectronics. Here we theoretically and experimentally elucidate the role of surface tension in the rapid synthesis of perovskite single crystals by inverse temperature crystallization. Understanding the nucleation and growth mechanisms enabled us to exploit surface tension to direct the growth of monocrystalline films of perovskites (AMX3, where A = CH3NH3+ or MA; M = Pb2+, Sn2+; X = Br–, I–) on the solution surface. We achieve up to 1 cm2-sized monocrystalline films with thickness on the order of the charge carrier diffusion length (∼5–10 μm). Our work paves the way to control the crystallization process of perovskites, including thin-film deposition, which is essential to advance the performance b...

139 citations

Journal ArticleDOI
TL;DR: In this paper, a new family of polymers which are based on amines, amidoximes, and natural carboxylic acids can be obtained using sustainable low energy processes, and the formation of deep eutectic monomers was confirmed by differential scanning calorimetry measurements.
Abstract: The design of high performance solid sorbent materials for CO2 capture is a technology which has been employed to mitigate global warming. However, the covalent incorporation of functionalities into polymeric supports usually involves multistep energy-intensive chemical processes. This fact makes the net CO2 balance of the materials negative even though they possess good properties as CO2 sorbents. Here we show a new family of polymers which are based on amines, amidoximes, and natural carboxylic acids and can be obtained using sustainable low energy processes. Thus, deep eutectic monomers based on natural carboxylic acids, amidoximes, and amines have been prepared by just mixing with cholinium type methacrylic ammonium monomer. The formation of deep eutectic monomers was confirmed by differential scanning calorimetry measurements. In all cases, the monomers displayed glass transition temperatures well below room temperature. Computational studies revealed that the formation of eutectic complexes lengthen...

57 citations

Journal ArticleDOI
TL;DR: The coordination chemistry of 1,1'-diisocyanoferrocene (1) was investigated, and its oxidation leads to a marked decrease of net electron donor ability.
Abstract: The coordination chemistry of 1,1‘-diisocyanoferrocene (1) was investigated. Its reaction with Cr(CO)5(THF) (2 equiv) affords (1)[Cr(CO)5]2, which exhibits eclipsed cyclopentadienyl rings with a synclinal arrangement of the two substituents. 1 behaves like an aryl isocyanide in this compound according to IR spectroscopic data, and its oxidation leads to a marked decrease of net electron donor ability. The reaction of 1 with AuCl(SMe2) affords the insoluble coordination polymer [(1)(AuCl)2]∞. The (1)(AuCl)2 molecules adopt a 3,4-diaura-[6]ferrocenophane structure. They are aggregated in a zipperlike fashion through aurophilic interactions, with Au−Au distances ranging from 3.34 to 3.48 A. The adsorption of 1 from acetonitrile solution on polycrystalline gold affords a self-assembled monolayer. Both isocyanide groups are binding to the surface.

54 citations

Journal ArticleDOI
TL;DR: Polychalcogenide aerogels with ion-exchange properties are demonstrated in cobalt polysulfide and show a broad range of pore sizes and high surface area.
Abstract: We present a promising approach in synthetic chalcogel chemistry that is extendable to a broad variety of inorganic spacers. Polychalcogenide aerogels with ion-exchange properties are demonstrated ...

51 citations


Cited by
More filters
Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: The broad tunability and fabrication methods of these materials, the current understanding of the operation of state-of-the-art solar cells and the properties that have delivered light-emitting diodes and lasers are described.
Abstract: Metal-halide perovskites are crystalline materials originally developed out of scientific curiosity. Unexpectedly, solar cells incorporating these perovskites are rapidly emerging as serious contenders to rival the leading photovoltaic technologies. Power conversion efficiencies have jumped from 3% to over 20% in just four years of academic research. Here, we review the rapid progress in perovskite solar cells, as well as their promising use in light-emitting devices. In particular, we describe the broad tunability and fabrication methods of these materials, the current understanding of the operation of state-of-the-art solar cells and we highlight the properties that have delivered light-emitting diodes and lasers. We discuss key thermal and operational stability challenges facing perovskites, and give an outlook of future research avenues that might bring perovskite technology to commercialization.

2,513 citations

Journal ArticleDOI
04 Dec 2015-Science
TL;DR: Efficient organic-inorganic perovskite light-emitting diodes were made with nanograin crystals that lack metallic lead, which helped to confine excitons and avoid their quenching.
Abstract: Organic-inorganic hybrid perovskites are emerging low-cost emitters with very high color purity, but their low luminescent efficiency is a critical drawback. We boosted the current efficiency (CE) of perovskite light-emitting diodes with a simple bilayer structure to 42.9 candela per ampere, similar to the CE of phosphorescent organic light-emitting diodes, with two modifications: We prevented the formation of metallic lead (Pb) atoms that cause strong exciton quenching through a small increase in methylammonium bromide (MABr) molar proportion, and we spatially confined the exciton in uniform MAPbBr3 nanograins (average diameter = 99.7 nanometers) formed by a nanocrystal pinning process and concomitant reduction of exciton diffusion length to 67 nanometers. These changes caused substantial increases in steady-state photoluminescence intensity and efficiency of MAPbBr3 nanograin layers.

2,295 citations

Journal ArticleDOI
08 May 2015-Science
TL;DR: The grain boundaries were dimmer and exhibited faster nonradiative decay, and energy-dispersive x-ray spectroscopy showed a positive correlation between chlorine concentration and regions of brighter PL, whereas PL imaging revealed that chemical treatment with pyridine could activate previously dark grains.
Abstract: The remarkable performance of hybrid perovskite photovoltaics is attributed to their long carrier lifetimes and high photoluminescence (PL) efficiencies. High-quality films are associated with slower PL decays, and it has been claimed that grain boundaries have a negligible impact on performance. We used confocal fluorescence microscopy correlated with scanning electron microscopy to spatially resolve the PL decay dynamics from films of nonstoichiometric organic-inorganic perovskites, CH3NH3PbI3(Cl). The PL intensities and lifetimes varied between different grains in the same film, even for films that exhibited long bulk lifetimes. The grain boundaries were dimmer and exhibited faster nonradiative decay. Energy-dispersive x-ray spectroscopy showed a positive correlation between chlorine concentration and regions of brighter PL, whereas PL imaging revealed that chemical treatment with pyridine could activate previously dark grains.

1,791 citations

Journal ArticleDOI
TL;DR: A perovskite mixed material comprising a series of differently quantum-size-tuned grains that funnels photoexcitations to the lowest-bandgap light-emitter in the mixture functions as charge carrier concentrators, ensuring that radiative recombination successfully outcompetes trapping and hence non-radiatives recombination.
Abstract: Organometal halide perovskites exhibit large bulk crystal domain sizes, rare traps, excellent mobilities and carriers that are free at room temperature-properties that support their excellent performance in charge-separating devices. In devices that rely on the forward injection of electrons and holes, such as light-emitting diodes (LEDs), excellent mobilities contribute to the efficient capture of non-equilibrium charge carriers by rare non-radiative centres. Moreover, the lack of bound excitons weakens the competition of desired radiative (over undesired non-radiative) recombination. Here we report a perovskite mixed material comprising a series of differently quantum-size-tuned grains that funnels photoexcitations to the lowest-bandgap light-emitter in the mixture. The materials function as charge carrier concentrators, ensuring that radiative recombination successfully outcompetes trapping and hence non-radiative recombination. We use the new material to build devices that exhibit an external quantum efficiency (EQE) of 8.8% and a radiance of 80 W sr-1 m-2. These represent the brightest and most efficient solution-processed near-infrared LEDs to date.

1,756 citations