scispace - formally typeset
Search or ask a question
Author

Alexander Shapiro

Bio: Alexander Shapiro is an academic researcher from Georgia Institute of Technology. The author has contributed to research in topics: Stochastic programming & Optimization problem. The author has an hindex of 70, co-authored 252 publications receiving 26450 citations. Previous affiliations of Alexander Shapiro include University of South Africa & Ben-Gurion University of the Negev.


Papers
More filters
Book
24 Sep 2009
TL;DR: The authors dedicate this book to Julia, Benjamin, Daniel, Natan and Yael; to Tsonka, Konstatin and Marek; and to the Memory of Feliks, Maria, and Dentcho.
Abstract: List of notations Preface to the second edition Preface to the first edition 1. Stochastic programming models 2. Two-stage problems 3. Multistage problems 4. Optimization models with probabilistic constraints 5. Statistical inference 6. Risk averse optimization 7. Background material 8. Bibliographical remarks Bibliography Index.

2,443 citations

Journal ArticleDOI
TL;DR: It is intended to demonstrate that a properly modified SA approach can be competitive and even significantly outperform the SAA method for a certain class of convex stochastic problems.
Abstract: In this paper we consider optimization problems where the objective function is given in a form of the expectation. A basic difficulty of solving such stochastic optimization problems is that the involved multidimensional integrals (expectations) cannot be computed with high accuracy. The aim of this paper is to compare two computational approaches based on Monte Carlo sampling techniques, namely, the stochastic approximation (SA) and the sample average approximation (SAA) methods. Both approaches, the SA and SAA methods, have a long history. Current opinion is that the SAA method can efficiently use a specific (say, linear) structure of the considered problem, while the SA approach is a crude subgradient method, which often performs poorly in practice. We intend to demonstrate that a properly modified SA approach can be competitive and even significantly outperform the SAA method for a certain class of convex stochastic problems. We extend the analysis to the case of convex-concave stochastic saddle point problems and present (in our opinion highly encouraging) results of numerical experiments.

2,346 citations

Book
11 May 2000
TL;DR: It is shown here how the model derived recently in [Bouchut-Boyaval, M3AS (23) 2013] can be modified for flows on rugous topographies varying around an inclined plane.
Abstract: Basic notation.- Introduction.- Background material.- Optimality conditions.- Basic perturbation theory.- Second order analysis of the optimal value and optimal solutions.- Optimal Control.- References.

2,067 citations

Journal ArticleDOI
TL;DR: A Monte Carlo simulation--based approach to stochastic discrete optimization problems, where a random sample is generated and the expected value function is approximated by the corresponding sample average function.
Abstract: In this paper we study a Monte Carlo simulation--based approach to stochastic discrete optimization problems. The basic idea of such methods is that a random sample is generated and the expected value function is approximated by the corresponding sample average function. The obtained sample average optimization problem is solved, and the procedure is repeated several times until a stopping criterion is satisfied. We discuss convergence rates, stopping rules, and computational complexity of this procedure and present a numerical example for the stochastic knapsack problem.

1,728 citations

Journal ArticleDOI
TL;DR: A large deviation-type approximation, referred to as “Bernstein approximation,” of the chance constrained problem is built that is convex and efficiently solvable and extended to the case of ambiguous chance constrained problems, where the random perturbations are independent with the collection of distributions known to belong to a given convex compact set.
Abstract: We consider a chance constrained problem, where one seeks to minimize a convex objective over solutions satisfying, with a given close to one probability, a system of randomly perturbed convex constraints. This problem may happen to be computationally intractable; our goal is to build its computationally tractable approximation, i.e., an efficiently solvable deterministic optimization program with the feasible set contained in the chance constrained problem. We construct a general class of such convex conservative approximations of the corresponding chance constrained problem. Moreover, under the assumptions that the constraints are affine in the perturbations and the entries in the perturbation vector are independent-of-each-other random variables, we build a large deviation-type approximation, referred to as “Bernstein approximation,” of the chance constrained problem. This approximation is convex and efficiently solvable. We propose a simulation-based scheme for bounding the optimal value in the chance constrained problem and report numerical experiments aimed at comparing the Bernstein and well-known scenario approximation approaches. Finally, we extend our construction to the case of ambiguous chance constrained problems, where the random perturbations are independent with the collection of distributions known to belong to a given convex compact set rather than to be known exactly, while the chance constraint should be satisfied for every distribution given by this set.

1,099 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the adequacy of the conventional cutoff criteria and several new alternatives for various fit indexes used to evaluate model fit in practice were examined, and the results suggest that, for the ML method, a cutoff value close to.95 for TLI, BL89, CFI, RNI, and G...
Abstract: This article examines the adequacy of the “rules of thumb” conventional cutoff criteria and several new alternatives for various fit indexes used to evaluate model fit in practice. Using a 2‐index presentation strategy, which includes using the maximum likelihood (ML)‐based standardized root mean squared residual (SRMR) and supplementing it with either Tucker‐Lewis Index (TLI), Bollen's (1989) Fit Index (BL89), Relative Noncentrality Index (RNI), Comparative Fit Index (CFI), Gamma Hat, McDonald's Centrality Index (Mc), or root mean squared error of approximation (RMSEA), various combinations of cutoff values from selected ranges of cutoff criteria for the ML‐based SRMR and a given supplemental fit index were used to calculate rejection rates for various types of true‐population and misspecified models; that is, models with misspecified factor covariance(s) and models with misspecified factor loading(s). The results suggest that, for the ML method, a cutoff value close to .95 for TLI, BL89, CFI, RNI, and G...

76,383 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide guidance for substantive researchers on the use of structural equation modeling in practice for theory testing and development, and present a comprehensive, two-step modeling approach that employs a series of nested models and sequential chi-square difference tests.
Abstract: In this article, we provide guidance for substantive researchers on the use of structural equation modeling in practice for theory testing and development. We present a comprehensive, two-step modeling approach that employs a series of nested models and sequential chi-square difference tests. We discuss the comparative advantages of this approach over a one-step approach. Considerations in specification, assessment of fit, and respecification of measurement models using confirmatory factor analysis are reviewed. As background to the two-step approach, the distinction between exploratory and confirmatory analysis, the distinction between complementary approaches for theory testing versus predictive application, and some developments in estimation methods also are discussed.

34,720 citations

Journal ArticleDOI
TL;DR: In this paper, two types of error involved in fitting a model are considered, error of approximation and error of fit, where the first involves the fit of the model, and the second involves the model's shape.
Abstract: This article is concerned with measures of fit of a model. Two types of error involved in fitting a model are considered. The first is error of approximation which involves the fit of the model, wi...

25,611 citations

Journal ArticleDOI
TL;DR: A new coefficient is proposed to summarize the relative reduction in the noncentrality parameters of two nested models and two estimators of the coefficient yield new normed (CFI) and nonnormed (FI) fit indexes.
Abstract: Normed and nonnormed fit indexes are frequently used as adjuncts to chi-square statistics for evaluating the fit of a structural model A drawback of existing indexes is that they estimate no known population parameters A new coefficient is proposed to summarize the relative reduction in the noncentrality parameters of two nested models Two estimators of the coefficient yield new normed (CFI) and nonnormed (FI) fit indexes CFI avoids the underestimation of fit often noted in small samples for Bentler and Bonett's (1980) normed fit index (NFI) FI is a linear function of Bentler and Bonett's non-normed fit index (NNFI) that avoids the extreme underestimation and overestimation often found in NNFI Asymptotically, CFI, FI, NFI, and a new index developed by Bollen are equivalent measures of comparative fit, whereas NNFI measures relative fit by comparing noncentrality per degree of freedom All of the indexes are generalized to permit use of Wald and Lagrange multiplier statistics An example illustrates the behavior of these indexes under conditions of correct specification and misspecification The new fit indexes perform very well at all sample sizes

21,588 citations

Journal ArticleDOI
TL;DR: In this article, structural equation models with latent variables are defined, critiqued, and illustrated, and an overall program for model evaluation is proposed based upon an interpretation of converging and diverging evidence.
Abstract: Criteria for evaluating structural equation models with latent variables are defined, critiqued, and illustrated. An overall program for model evaluation is proposed based upon an interpretation of converging and diverging evidence. Model assessment is considered to be a complex process mixing statistical criteria with philosophical, historical, and theoretical elements. Inevitably the process entails some attempt at a reconcilation between so-called objective and subjective norms.

19,160 citations