scispace - formally typeset
Search or ask a question
Author

Alexander Y. Polyakov

Bio: Alexander Y. Polyakov is an academic researcher from National University of Science and Technology. The author has contributed to research in topics: Epitaxy & Deep-level transient spectroscopy. The author has an hindex of 39, co-authored 359 publications receiving 6549 citations. Previous affiliations of Alexander Y. Polyakov include Carnegie Mellon University & Chonbuk National University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the radiation resistance of GaN-based blue light emitting diodes (LEDs) to different types of ionizing radiation, and the role of existing defects in GaN are discussed.
Abstract: GalliumNitridebasedhighelectronmobilitytransistors(HEMTs)areattractiveforuseinhighpowerandhighfrequencyapplications, with higher breakdown voltages and two dimensional electron gas (2DEG) density compared to their GaAs counterparts. Specific applications for nitride HEMTs include air, land and satellite based communications and phased array radar. Highly efficient GaNbased blue light emitting diodes (LEDs) employ AlGaN and InGaN alloys with different compositions integrated into heterojunctions and quantum wells. The realization of these blue LEDs has led to white light sources, in which a blue LED is used to excite a phosphor material; light is then emitted in the yellow spectral range, which, combined with the blue light, appears as white. Alternatively, multiple LEDs of red, green and blue can be used together. Both of these technologies are used in high-efficiency white electroluminescent light sources. These light sources are efficient and long-lived and are therefore replacing incandescent and fluorescent lamps for general lighting purposes. Since lighting represents 20‐30% of electrical energy consumption, and because GaN white light LEDs require ten times less energy than ordinary light bulbs, the use of efficient blue LEDs leads to significant energy savings. GaN-based devices are more radiation hard than their Si and GaAs counterparts due to the high bond strength in III-nitride materials. The response of GaN to radiation damage is a function of radiation type, dose and energy, as well as the carrier density, impurity content and dislocation density in the GaN. The latter can act as sinks for created defects and parameters such as the carrier removal rate due to trapping of carriers into radiation-induced defects depends on the crystal growth method used to grow the GaN layers. The growth method has a clear effect on radiation response beyond the carrier type and radiation source. We review data on the radiation resistance of AlGaN/GaN and InAlN/GaN HEMTs and GaN‐based LEDs to different types of ionizing radiation, and discuss ion stopping mechanisms. The primary energy levels introduced by different forms of radiation, carrier removal rates and role of existing defects in GaN are discussed. The carrier removal rates are a function of initial carrier concentration and dose but not of dose rate or hydrogen concentration in the nitride material grown by Metal Organic Chemical Vapor Deposition. Proton and electron irradiation damage in HEMTs creates positive threshold voltage shifts due to a decrease in the two dimensional electron gas concentration resulting from electron trapping at defect sites, as well as a decrease in carrier mobility and degradation of drain current and transconductance. State-of-art simulators now provide accurate predictions for the observed changes in radiation-damaged HEMT performance. Neutron irradiation creates more extended damage regions and at high doses leads to Fermi level pinning while 60 Co γ-ray irradiation leads to much smaller changes in HEMT drain current relative to the other forms of radiation. In InGaN/GaN blue LEDs irradiated with protons at fluences near 10 14 cm −2 or electrons at fluences near 10 16 cm −2 , both current-voltage and light output-current characteristics are degraded with increasing proton dose. The optical performance of the LEDs is more sensitive to the proton or electron irradiation than that of the corresponding electrical performances. © The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any

235 citations

Journal ArticleDOI
TL;DR: In this paper, the role of deep defects in trapping in AlGaN/GaN, InAlN/AlGaN structures and transistors and in degradation of transistor parameters during electrical stress tests and after irradiation is discussed.
Abstract: New developments in theoretical studies of defects and impurities in III-Nitrides as pertinent to compensation and recombination in these materials are discussed. New results on experimental studies on defect states of Si, O, Mg, C, Fe in GaN, InGaN, and AlGaN are surveyed. Deep electron and hole traps data reported for GaN and AlGaN are critically assessed. The role of deep defects in trapping in AlGaN/GaN, InAlN/GaN structures and transistors and in degradation of transistor parameters during electrical stress tests and after irradiation is discussed. The recent data on deep traps influence on luminescent efficiency and degradation of characteristics of III-Nitride light emitting devices and laser diodes are reviewed.

186 citations

Journal ArticleDOI
TL;DR: The physical properties of GaSb are briefly presented and the device implications reviewed in this paper, where a direct gap semiconductor (0.72 eV) capable of being doped either p or n type with good mobilities and it has significant electrooptical potential in the near IR range.
Abstract: The physical properties of GaSb are briefly presented and the device implications reviewed. GaSb is a direct gap semiconductor (0.72 eV) capable of being doped either p or n type with good mobilities and it has significant electro-optical potential in the near IR range. As a substrate, or active layer, GaSb can be employed in conjunction with many semiconductors such as (AlGa)Sb or In(AsSb) and has interesting heterojunction potential for detectors and lasers and quantum well structures.

184 citations

Journal ArticleDOI
TL;DR: Au and Ag Schottky contacts on the epiready (0001)Zn surface of bulk n-ZnO crystals show Schotty barrier heights of 0.65-0.70 eV from capacitance-voltage measurements, activation energies for reverse saturation currents of 0 3 −0.4 eV and saturation current densities ranging from 10−5 A cm−2 on surfaces etched in HCl to 8×10−7 A¾2 on solvent cleaned samples.
Abstract: Au and Ag Schottky contacts on the epiready (0001)Zn surface of bulk n-ZnO crystals show Schottky barrier heights of 0.65–0.70 eV from capacitance–voltage measurements, activation energies for reverse saturation currents of 0.3–0.4 eV and saturation current densities ranging from 10−5 A cm−2 on surfaces etched in HCl to 8×10−7 A cm−2 on solvent cleaned samples. The diode ideality factors were in the range 1.6–1.8 under all conditions. The properties of both the Au and the Ag Schottky diodes were degraded by heating in vacuum to temperatures even as low as 365 K. The degradation mechanisms during annealing were different in each case, with the Au showing reaction with the ZnO surface and the Ag contacts showing localized delamination. Mechanical polishing of the ZnO surface prior to contact deposition produced a high-resistivity damaged layer with prominent deep level defects present with activation energies of 0.55 and 0.65 eV.

183 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that Z1∕Z2 alone controls the low-injection minority carrier lifetime in 4H-SiC p-i-n diodes under forward bias.
Abstract: Low-injection minority carrier lifetimes (MCLs) and deep trap spectra have been investigated in n− 4H-SiC epilayers of varying layer thicknesses, in order to enable the separation of bulk lifetimes from surface recombination effects. From the linear dependence of the inverse bulk MCL on the concentration of Z1∕Z2 defects and from the behavior of the deep trap spectra in 4H-SiC p-i-n diodes under forward bias, we conclude that it is Z1∕Z2 alone that controls the MCL in this material.

182 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III-V semiconductors that have been investigated to date is presented.
Abstract: We present a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III–V semiconductors that have been investigated to date. The two main classes are: (1) “conventional” nitrides (wurtzite and zinc-blende GaN, InN, and AlN, along with their alloys) and (2) “dilute” nitrides (zinc-blende ternaries and quaternaries in which a relatively small fraction of N is added to a host III–V material, e.g., GaAsN and GaInAsN). As in our more general review of III–V semiconductor band parameters [I. Vurgaftman et al., J. Appl. Phys. 89, 5815 (2001)], complete and consistent parameter sets are recommended on the basis of a thorough and critical review of the existing literature. We tabulate the direct and indirect energy gaps, spin-orbit and crystal-field splittings, alloy bowing parameters, electron and hole effective masses, deformation potentials, elastic constants, piezoelectric and spontaneous polarization coefficients, as well as heterostructure band offsets. Temperature an...

2,525 citations

Journal ArticleDOI
TL;DR: In this paper, the structural and point defects caused by lattice and stacking mismatch with substrates are discussed. But even the best of the three binaries, InN, AIN and AIN as well as their ternary compounds, contain many structural defects, and these defects notably affect the electrical and optical properties of the host material.
Abstract: Gallium nitride (GaN) and its allied binaries InN and AIN as well as their ternary compounds have gained an unprecedented attention due to their wide-ranging applications encompassing green, blue, violet, and ultraviolet (UV) emitters and detectors (in photon ranges inaccessible by other semiconductors) and high-power amplifiers. However, even the best of the three binaries, GaN, contains many structural and point defects caused to a large extent by lattice and stacking mismatch with substrates. These defects notably affect the electrical and optical properties of the host material and can seriously degrade the performance and reliability of devices made based on these nitride semiconductors. Even though GaN broke the long-standing paradigm that high density of dislocations precludes acceptable device performance, point defects have taken the center stage as they exacerbate efforts to increase the efficiency of emitters, increase laser operation lifetime, and lead to anomalies in electronic devices. The p...

1,724 citations