scispace - formally typeset
Search or ask a question
Author

Alexandra B. Nguyen

Bio: Alexandra B. Nguyen is an academic researcher from McGill University. The author has contributed to research in topics: Retinal pigment epithelium & Vitrectomy. The author has co-authored 1 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: The use of hydrogels in ocular therapy has been a critical focus in overcoming the limitations of current treatments as discussed by the authors, such as the potential for surgically induced astigmatism or wound leakage.
Abstract: With the prevalence of eye diseases, such as cataracts, retinal degenerative diseases, and glaucoma, different treatments including lens replacement, vitrectomy, and stem cell transplantation have been developed; however, they are not without their respective shortcomings. For example, current methods to seal corneal incisions induced by cataract surgery, such as suturing and stromal hydration, are less than ideal due to the potential for surgically induced astigmatism or wound leakage. Vitrectomy performed on patients with diabetic retinopathy requires an artificial vitreous substitute, with current offerings having many shortcomings such as retinal toxicity. The use of stem cells has also been investigated in retinal degenerative diseases; however, an optimal delivery system is required for successful transplantation. The incorporation of hydrogels into ocular therapy has been a critical focus in overcoming the limitations of current treatments. Previous reviews have extensively documented the use of hydrogels in drug delivery; thus, the goal of this review is to discuss recent advances in hydrogel technology in surgical applications, including dendrimer and gelatin-based hydrogels for ocular adhesives and a variety of different polymers for vitreous substitutes, as well as recent advances in hydrogel-based retinal pigment epithelium (RPE) and retinal progenitor cell (RPC) delivery to the retina.

11 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article , the effects of diabetes on the retina, heart, and kidneys are described, and a putative common microRNA signature in diabetic retinopathy, nephropathy, and heart failure is discussed, which may be used as a biomarker to better monitor disease progression.
Abstract: Diabetes mellitus is a common disease affecting more than 537 million adults worldwide. The microvascular complications that occur during the course of the disease are widespread and affect a variety of organ systems in the body. Diabetic retinopathy is one of the most common long-term complications, which include, amongst others, endothelial dysfunction, and thus, alterations in the blood-retinal barrier (BRB). This particularly restrictive physiological barrier is important for maintaining the neuroretina as a privileged site in the body by controlling the inflow and outflow of fluid, nutrients, metabolic end products, ions, and proteins. In addition, people with diabetic retinopathy (DR) have been shown to be at increased risk for systemic vascular complications, including subclinical and clinical stroke, coronary heart disease, heart failure, and nephropathy. DR is, therefore, considered an independent predictor of heart failure. In the present review, the effects of diabetes on the retina, heart, and kidneys are described. In addition, a putative common microRNA signature in diabetic retinopathy, nephropathy, and heart failure is discussed, which may be used in the future as a biomarker to better monitor disease progression. Finally, the use of miRNA, targeted neurotrophin delivery, and nanoparticles as novel therapeutic strategies is highlighted.

5 citations

Journal ArticleDOI
Zhi Yao, Jiankun Xu, Jun Shen, Ling Qin, Weihao Yuan 
TL;DR: A comprehensive review of the main strategies to construct biomimetic hierarchical nanocomposite hydrogels with an emphasis on the rational design of local hydrogel properties and their stimuli-responsibility is presented in this paper .
Abstract: Natural extracellular matrix (ECM) is highly heterogeneous and anisotropic due to the existence of biomacromolecule bundles and pores. Hydrogels have been proposed as ideal carriers for therapeutic cells and drugs in tissue engineering and regenerative medicine. However, most of the homogeneous and isotropic hydrogels cannot fully emulate the hierarchical properties of natural ECM, including the dynamically spatiotemporal distributions of biochemical and biomechanical signals. Biomimetic hierarchical nanocomposite hydrogels have emerged as potential candidates to better recapitulate natural ECM by introducing various nanostructures, such as nanoparticles, nanorods, and nanofibers. Moreover, the nanostructures in nanocomposite hydrogels can be engineered as stimuli-responsive actuators to realize the desirable control of hydrogel properties, thereby manipulating the behaviors of the encapsulated cells upon appropriate external stimuli. In this review, we present a comprehensive summary of the main strategies to construct biomimetic hierarchical nanocomposite hydrogels with an emphasis on the rational design of local hydrogel properties and their stimuli-responsibility. We then highlight cell fate decisions in engineered nanocomposite niches and their recent development and challenges in biomedical applications.

2 citations

Journal ArticleDOI
TL;DR: This review focuses on the most clinically used ophthalmic biomaterials, including contact lenses, intraocular lenses, artificial tears, inlays and vitreous replacements and tissue engineering is presented as a new tool that is able to be treat several ophthalmologic disorders.
Abstract: Ophthalmology is the branch of medicine that deals with diseases of the eye, the organ responsible for vision, and its attachments. Biomaterials can be made with different types of materials and can replace or improve a function or an organ, specifically the eye in the case of ophthalmic biomaterials. Biomaterials are substances that interact with biological systems for a medical purpose, either as a therapeutic (treat, augment, repair, or replace a tissue function of the body) or a diagnostic agent, and have continued to improve over the years, leading to the creation of new biomaterials. With the arrival of new generations, biomaterials have succeeded in reducing complications and toxicity and improving biocompatibilities associated with older generations. With the aging population, eye problems are becoming more prevalent, and biomaterials have helped in recent years to improve or restore vision, improving the quality of life of many patients. This review focuses on the most clinically used ophthalmic biomaterials, including contact lenses, intraocular lenses, artificial tears, inlays and vitreous replacements. Tissue engineering is presented as a new tool that is able to be treat several ophthalmologic disorders.

1 citations

Journal ArticleDOI
01 Jan 2023-Gels
TL;DR: In this paper , an interpenetrating network polymer capable of encapsulating human retinal progenitor cells (hRPCs) was created, which can be used as a vehicle for cell delivery in vivo as well as for expansion and differentiation in an in vitro 3D system.
Abstract: Engineering matrices for cell therapy requires design criteria that include the ability of these materials to support, protect and enhance cellular behavior in vivo. The chemical and mechanical formulation of the biomaterials can influence not only target cell phenotype but also cellular differentiation. In this study, we have demonstrated the effect of a gelatin (Gtn)—hyaluronic acid (HA) hydrogel on human retinal progenitor cells (hRPCs) and show that by altering the mechanical properties of the materials, cellular behavior is altered as well. We have created an interpenetrating network polymer capable of encapsulating hRPCs. By manipulating the stiffness of the hydrogel, the differentiation potential of the hRPCs was controlled. Interpenetrating network 75 (IPN 75; 75% HA) allowed higher expression of rod photoreceptor markers, whereas cone photoreceptor marker expression was found to be higher in IPN 50. In vivo testing of these living matrices performed in Long–Evans rats showed higher levels of rod photoreceptor marker expression when IPN 75 was injected versus IPN 50. These biomaterials mimic biological cues that are required to simulate the dynamic complexity of natural retinal ECM. These hydrogels can be used as a vehicle for cell delivery in vivo as well as for expansion and differentiation in an in vitro 3D system in a highly reproducible manner.

1 citations

Journal ArticleDOI
TL;DR: In this article , the authors examined four typical biodegradable hydrogels as supports for hESC-RPE growth and found that fibrin is a suitable scaffold for RPE transplantation, which could be a new grafting material for tissue engineering RPE cells.
Abstract: Purpose: Retinal pigment epithelial (RPE) cells are highly specialized neural cells with several functions essential for vision. Progressive deterioration of RPE cells in elderly individuals can result in visual impairment and, ultimately, blinding disease. While human embryonic stem cell-derived RPE cell (hESC-RPE) growth conditions are generally harsher than those of cell lines, the subretinal transplantation of hESC-RPE is being clinically explored as a strategy to recover the damaged retina and improve vision. The cell-adhesion ability of the support is required for RPE transplantation, where pre-polarized cells can maintain specific functions on the scaffold. This work examined four typical biodegradable hydrogels as supports for hESC-RPE growth. Methods: Four biodegradable hydrogels were examined: gelatin methacryloyl (GelMA), hyaluronic acid methacryloyl (HAMA), alginate, and fibrin hydrogels. ARPE-19 and hESC-RPE cells were seeded onto the hydrogels separately, and the ability of these supports to facilitate adherence, proliferation, and homogeneous distribution of differentiated hESC-RPE cells was investigated. Furthermore, the hydrogel’s subretinal bio-compatibility was assessed in vivo. Results: We showed that ARPE-19 and hESC-RPE cells adhered and proliferated only on the fibrin support. The monolayer formed when cells reached confluency, demonstrating the polygonal semblance, and revealing actin filaments that moved along the cytoplasm. The expression of tight junction proteins at cell interfaces on the 14th day of seeding demonstrated the barrier function of epithelial cells on polymeric surfaces and the interaction between cells. Moreover, the expression of proteins crucial for retinal functions and matrix production was positively affected by fibrin, with an increment of PEDF. Our in vivo investigation with fibrin hydrogels revealed high short-term subretinal biocompatibility. Conclusions: The research of stem cell-based cell therapy for retinal degenerative diseases is more complicated than that of cell lines. Our results showed that fibrin is a suitable scaffold for hESC-RPE transplantation, which could be a new grafting material for tissue engineering RPE cells.

1 citations