scispace - formally typeset
Search or ask a question
Author

Alexandre Kudlinski

Bio: Alexandre Kudlinski is an academic researcher from university of lille. The author has contributed to research in topics: Optical fiber & Photonic-crystal fiber. The author has an hindex of 34, co-authored 310 publications receiving 4211 citations. Previous affiliations of Alexandre Kudlinski include Centre national de la recherche scientifique & Lille University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The fabrication of photonic crystal fibers with a continuously-decreasing zero-dispersion wavelength along their length is reported, designed to extend the generation of supercontinuum spectra from the visible into the ultraviolet.
Abstract: We report the fabrication of photonic crystal fibers with a continuously-decreasing zero-dispersion wavelength along their length. These tapered fibers are designed to extend the generation of supercontinuum spectra from the visible into the ultraviolet. We report on their performance when pumped with both nanosecond and picosecond sources at 1.064 microm. The supercontinuum spectra have a spectral width (measured at the 10 dB points) extending from 0.372 microm to beyond 1.75 microm. In an optimal configuration a flat (3 dB) spectrum from 395 to 850 nm, with a minimum spectral power density of 2 mW/nm was achieved, with a total continuum output power of 3.5 W. We believe that the shortest wavelengths were generated by cascaded four-wave mixing: the continuous decrease of the zero dispersion wavelength along the fiber length enables the phase-matching condition to be satisfied for a wide range of wavelengths into the ultraviolet, while simultaneously increasing the nonlinear coefficient of the fiber.

255 citations

Journal ArticleDOI
TL;DR: The concept of optical rogue wave was introduced by Solli et al. as discussed by the authors, who defined it as "an optical pulse whose amplitude or intensity is much higher than that of the surrounding pulses".
Abstract: The pioneering paper 'Optical rogue waves' by Solli et al (2007 Nature 450 1054) started the new subfield in optics. This work launched a great deal of activity on this novel subject. As a result, the initial concept has expanded and has been enriched by new ideas. Various approaches have been suggested since then. A fresh look at the older results and new discoveries has been undertaken, stimulated by the concept of 'optical rogue waves'. Presently, there may not by a unique view on how this new scientific term should be used and developed. There is nothing surprising when the opinion of the experts diverge in any new field of research. After all, rogue waves may appear for a multiplicity of reasons and not necessarily only in optical fibers and not only in the process of supercontinuum generation. We know by now that rogue waves may be generated by lasers, appear in wide aperture cavities, in plasmas and in a variety of other optical systems. Theorists, in turn, have suggested many other situations when rogue waves may be observed. The strict definition of a rogue wave is still an open question. For example, it has been suggested that it is defined as 'an optical pulse whose amplitude or intensity is much higher than that of the surrounding pulses'. This definition (as suggested by a peer reviewer) is clear at the intuitive level and can be easily extended to the case of spatial beams although additional clarifications are still needed. An extended definition has been presented earlier by N Akhmediev and E Pelinovsky (2010 Eur. Phys. J. Spec. Top. 185 1-4). Discussions along these lines are always useful and all new approaches stimulate research and encourage discoveries of new phenomena. Despite the potentially existing disagreements, the scientific terms 'optical rogue waves' and 'extreme events' do exist. Therefore coordination of our efforts in either unifying the concept or in introducing alternative definitions must be continued. From this point of view, a number of the scientists who work in this area of research have come together to present their research in a single review article that will greatly benefit all interested parties of this research direction. Whether the authors of this 'roadmap' have similar views or different from the original concept, the potential reader of the review will enrich their knowledge by encountering most of the existing views on the subject. Previously, a special issue on optical rogue waves (2013 J. Opt. 15 060201) was successful in achieving this goal but over two years have passed and more material has been published in this quickly emerging subject. Thus, it is time for a roadmap that may stimulate and encourage further research.

243 citations

Journal ArticleDOI
TL;DR: A detailed study of real-time fluctuations across the full bandwidth of a fiber supercontinuum which directly reveals the significant variation in measured noise statistics across the spectrum, and which allows us to study correlations between widely separated spectral components.
Abstract: The ability to measure real-time fluctuations of ultrashort pulses propagating in optical fiber has provided significant insights into fundamental dynamical effects such as modulation instability and the formation of frequency-shifting rogue wave solitons. We report here a detailed study of real-time fluctuations across the full bandwidth of a fiber supercontinuum which directly reveals the significant variation in measured noise statistics across the spectrum, and which allows us to study correlations between widely separated spectral components. For two different propagation distances corresponding to the onset phase of spectral broadening and the fully-developed supercontinuum, we measure real time noise across the supercontinuum bandwidth, and we quantify the supercontinuum noise using statistical higher-order moments and a frequency-dependent intensity correlation map. We identify correlated spectral regions within the supercontinuum associated with simultaneous sideband generation, as well as signatures of pump depletion and soliton-like pump dynamics. Experimental results are in excellent agreement with simulations.

159 citations

Journal ArticleDOI
TL;DR: The temporal output of the supercontinuum is characterized by strong and brief power fluctuations, i.e. so-called optical rogue waves, and it is demonstrated numerically that these rare and strong events that appear and disappear from nowhere result from solitonic collisions.
Abstract: We study experimentally and numerically the temporal features of supercontinuum generated with a continuous-wave ytterbium-doped fiber laser. We show that the temporal output of the supercontinuum is characterized by strong and brief power fluctuations, i.e. so-called optical rogue waves. We demonstrate numerically that these rare and strong events that appear and disappear from nowhere result from solitonic collisions.

137 citations

Journal ArticleDOI
TL;DR: In this article, the evolution in amplitude and phase of frequency modes is reconstructed via post-processing of the fiber backscattered light. But the proposed technique is an important tool to characterize other mixing processes and new regimes of rogue wave formation and wave turbulence in fibre optics.
Abstract: In optical fibres, weak modulations can grow at the expense of a strong pump to form a triangular comb of sideband pairs, until the process is reversed. Repeated cycles of such conversion and back-conversion constitute a manifestation of the universal nonlinear phenomenon known as Fermi–Pasta–Ulam recurrence. However, it remains a major challenge to observe the coexistence of different types of recurrences owing to the spontaneous symmetry-breaking nature of such a phenomenon. Here, we implement a novel non-destructive technique that allows the evolution in amplitude and phase of frequency modes to be reconstructed via post-processing of the fibre backscattered light. We clearly observe how control of the input modulation seed results in different recursive behaviours emerging from the phase-space structure dictated by the spontaneously broken symmetry. The proposed technique is an important tool to characterize other mixing processes and new regimes of rogue-wave formation and wave turbulence in fibre optics.

126 citations


Cited by
More filters
Book ChapterDOI
27 Jan 2010

878 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce the concept of rogue waves, which is the name given by oceanographers to isolated large amplitude waves, that occur more frequently than expected for normal, Gaussian distributed, statistical events.

851 citations

Journal ArticleDOI
TL;DR: In this paper, the authors cover the principle of dispersive Fourier transformation and its implementation in diverse applications, such as optical rogue waves and rare cancer cells in blood, as well as their application in real-time instrumentation and measurement.
Abstract: It's challenging to measure non-repetitive events in real time in the field of instrumentation and measurement. Dispersive Fourier transformation is an emerging method that permits capture of rare events, such as optical rogue waves and rare cancer cells in blood. This Review article covers the principle of dispersive Fourier transformation and its implementation in diverse applications.

745 citations

Journal ArticleDOI
TL;DR: Curious wave phenomena that occur in optical fibres due to the interplay of instability and nonlinear effects are reviewed in this article, where the authors propose a method to detect such phenomena.
Abstract: Curious wave phenomena that occur in optical fibres due to the interplay of instability and nonlinear effects are reviewed.

735 citations