scispace - formally typeset
Search or ask a question
Author

Alexandre Legris

Bio: Alexandre Legris is an academic researcher from university of lille. The author has contributed to research in topics: Ab initio & Dislocation. The author has an hindex of 25, co-authored 73 publications receiving 1726 citations. Previous affiliations of Alexandre Legris include Lille University of Science and Technology & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the generalized gradient approximation (GGA) is used to describe the interactions between Zr and H atoms in the Zr-H system, and it is shown that the GGA is sufficient for a proper description of the interactions.

152 citations

Journal ArticleDOI
TL;DR: In this article, the authors have found that the primary damage is potential sensitive and that the repulsive part of the potential has a strong influence on the cascade morphology and equilibrium properties such as the atoms mean square displacements, the vacancy migration and vacancy binding energies also appear to have some influence and should be investigated carefully when simulating radiation damage.

112 citations

Journal ArticleDOI
TL;DR: In this article, the nano-oxide population evolution under irradiation is similar to that observed after annealing at high temperature, which can be both explained by an Ostwald ripening mechanism and the complete dissolution of the oxide particles.

102 citations

Journal ArticleDOI
TL;DR: A new Zr hydride named ζ has been identified and characterized and it belongs to the trigonal crystal system with space group P3 m1 and it is fully coherent with the αZr matrix.
Abstract: Zirconium alloys are currently used in nuclear power plants where they are susceptible to hydrogen pick-up. Hydride precipitation may occur when the hydrogen solubility limit is reached. Various Zr hydride phases, gamma, delta and epsilon have been identified since the 1950s. Combining electron precession microdiffraction, electron energy loss spectroscopy and ab initio electronic calculations, a new Zr hydride named zeta has been identified and characterized. It belongs to the trigonal crystal system with space group P3 m1 and it is fully coherent with the alphaZr matrix.

90 citations

Journal ArticleDOI
TL;DR: In this article, the interaction of hydrogen with plane defects (free surfaces and stacking faults) in the α-Zr-H solid solution was studied using ab initio calculations based on density functional theory.

82 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the properties of the triangular flux-line lattice (FLL), which is more or less perturbed by material inhomogeneities that pin the flux lines, and also by thermal fluctuations.
Abstract: Magnetic flux can penetrate a type-II superconductor in the form of Abrikosov vortices (also called flux lines, flux tubes, or fluxons) each carrying a quantum of magnetic flux phi 0=h/2e. These tiny vortices of supercurrent tend to arrange themselves in a triangular flux-line lattice (FLL), which is more or less perturbed by material inhomogeneities that pin the flux lines, and in high-Tc superconductors (HTSCs) also by thermal fluctuations. Many properties of the FLL are well described by the phenomenological Ginzburg-Landau theory or by the electromagnetic London theory, which treats the vortex core as a singularity. In Nb alloys and HTSCs the FLL is very soft mainly because of the large magnetic penetration depth lambda . The shear modulus of the FLL is c66~1/ lambda 2, and the tilt modulus c44(k)~(1+k2 lambda 2)-1 is dispersive and becomes very small for short distortion wavelengths 2 pi /k<< lambda . This softness is enhanced further by the pronounced anisotropy and layered structure of HTSCs, which strongly increases the penetration depth for currents along the c axis of these (nearly uniaxial) crystals and may even cause a decoupling of two-dimensional vortex lattices in the Cu-O layers. Thermal fluctuations and softening may `melt` the FLL and cause thermally activated depinning of the flux lines or ofthe two-dimensional `pancake vortices` in the layers. Various phase transitions are predicted for the FLL in layered HTSCs. Although large pinning forces and high critical currents have been achieved, the small depinning energy so far prevents the application of HTSCs as conductors at high temperatures except in cases when the applied current and the surrounding magnetic field are small.

866 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the properties of the triangular flux-line lattice (FLL), which is more or less perturbed by material inhomogeneities that pin the flux lines and also by thermal fluctuations.
Abstract: Magnetic flux can penetrate a type-II superconductor in form of Abrikosov vortices. These tend to arrange in a triangular flux-line lattice (FLL) which is more or less perturbed by material inhomogeneities that pin the flux lines, and in high-$T_c$ supercon- ductors (HTSC's) also by thermal fluctuations. Many properties of the FLL are well described by the phenomenological Ginzburg-Landau theory or by the electromagnetic London theory, which treats the vortex core as a singularity. In Nb alloys and HTSC's the FLL is very soft mainly because of the large magnetic penetration depth: The shear modulus of the FLL is thus small and the tilt modulus is dispersive and becomes very small for short distortion wavelength. This softness of the FLL is enhanced further by the pronounced anisotropy and layered structure of HTSC's, which strongly increases the penetration depth for currents along the c-axis of these uniaxial crystals and may even cause a decoupling of two-dimensional vortex lattices in the Cu-O layers. Thermal fluctuations and softening may melt the FLL and cause thermally activated depinning of the flux lines or of the 2D pancake vortices in the layers. Various phase transitions are predicted for the FLL in layered HTSC's. The linear and nonlinear magnetic response of HTSC's gives rise to interesting effects which strongly depend on the geometry of the experiment.

812 citations

Journal ArticleDOI
TL;DR: In this paper, the role of water as well as stress, temperature, pressure, and partial melting has been addressed, and new results require major modifications to the geodynamic interpretation of seismic anisotropy in tectonically active regions such as subduction zones, asthenosphere and plumes.
Abstract: Seismic anisotropy is caused mainly by the lattice-preferred orientation of anisotropic minerals. Major breakthroughs have occurred in the study of lattice-preferred orientation in olivine during the past ∼10 years through large-strain, shear deformation experiments at high pressures. The role of water as well as stress, temperature, pressure, and partial melting has been addressed. The influence of water is large, and new results require major modifications to the geodynamic interpretation of seismic anisotropy in tectonically active regions such as subduction zones, asthenosphere, and plumes. The main effect of partial melting on deformation fabrics is through the redistribution of water, not through a change in deformation geometry. A combination of new experimental results with seismological observations provides new insights into the distribution of water associated with plume-asthenosphere interactions, formation of the oceanic lithosphere, and subduction. However, large uncertainties remain regarding the role of pressure and the deformation fabrics at low stress conditions.

644 citations

Posted Content
TL;DR: The electronic structure of the perovskite LaCoO3 for different spin states of Co ions was calculated in the local-density approximation LDA+U approach and shows that Co 3d states of t(2g) symmetry form narrow bands which could easily localize, while e(g) orbitals, due to their strong hybridization with the oxygen 2p states, form a broad sigma* band.
Abstract: The electronic structure of the perovskite LaCoO$_3$ for different spin states of Co ions was calculated in the LDA+U approach. The ground state was found to be a nonmagnetic insulator with Co ions in a low-spin state. Somewhat higher in energy we found two intermediate-spin states followed by a high-spin state at significantly higher energy. The calculation results show that Co 3$d$ states of $t_{2g}$ symmetry form narrow bands which could easily localize whilst $e_g$ orbitals, due to their strong hybridization with the oxygen 2$p$ states, form a broad $\sigma^*$ band. With the increase of temperature which is simulated by the corresponding increase of the lattice parameter, the transition from the low- to intermediate-spin states occurs. This intermediate-spin (occupation $t_{2g}^5e_g^1$) can develop an orbital ordering which can account for the nonmetallic nature of LaCoO$_3$ at 90 K$<$T$<$500 K. Possible explanations of the magnetic behavior and gradual insulating-metal transition are suggested.

531 citations