scispace - formally typeset
Search or ask a question
Author

Alexandros Bouras

Bio: Alexandros Bouras is an academic researcher from Icahn School of Medicine at Mount Sinai. The author has contributed to research in topics: Glioma & Medicine. The author has an hindex of 10, co-authored 16 publications receiving 600 citations. Previous affiliations of Alexandros Bouras include Mount Sinai Hospital & Emory University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this review, the application of MHT as a therapeutic modality for GBM will be discussed, its therapeutic efficacy, technical details, and major experimental and clinical findings will be reviewed and analysed.
Abstract: Hyperthermia therapy (HT) is the exposure of a region of the body to elevated temperatures to achieve a therapeutic effect. HT anticancer properties and its potential as a cancer treatment have been studied for decades. Techniques used to achieve a localised hyperthermic effect include radiofrequency, ultrasound, microwave, laser and magnetic nanoparticles (MNPs). The use of MNPs for therapeutic hyperthermia generation is known as magnetic hyperthermia therapy (MHT) and was first attempted as a cancer therapy in 1957. However, despite more recent advancements, MHT has still not become part of the standard of care for cancer treatment. Certain challenges, such as accurate thermometry within the tumour mass and precise tumour heating, preclude its widespread application as a treatment modality for cancer. MHT is especially attractive for the treatment of glioblastoma (GBM), the most common and aggressive primary brain cancer in adults, which has no cure. In this review, the application of MHT as a therapeutic modality for GBM will be discussed. Its therapeutic efficacy, technical details, and major experimental and clinical findings will be reviewed and analysed. Finally, current limitations, areas of improvement, and future directions will be discussed in depth.

234 citations

Journal ArticleDOI
TL;DR: PDT remains a promising therapeutic approach that requires further study in high-grade gliomas and requires a better understanding of its mechanisms of action.
Abstract: Photodynamic therapy (PDT) is a two-step treatment involving the administration of a photosensitive agent followed by its activation at a specific light wavelength for targeting of tumor cells. A comprehensive review of the literature was performed to analyze the indications for PDT, mechanisms of action, use of different photosensitizers, the immunomodulatory effects of PDT, and both preclinical and clinical studies for use in high-grade gliomas (HGGs). PDT has been approved by the United States Food and Drug Administration (FDA) for the treatment of premalignant and malignant diseases, such as actinic keratoses, Barrett’s esophagus, esophageal cancers, and endobronchial non-small cell lung cancers, as well as for the treatment of choroidal neovascularization. In neuro-oncology, clinical trials are currently underway to demonstrate PDT efficacy against a number of malignancies that include HGGs and other brain tumors. Both photosensitizers and photosensitizing precursors have been used for PDT. 5-aminolevulinic acid (5-ALA), an intermediate in the heme synthesis pathway, is a photosensitizing precursor with FDA approval for PDT of actinic keratosis and as an intraoperative imaging agent for fluorescence-guided visualization of malignant tissue during glioma surgery. New trials are underway to utilize 5-ALA as a therapeutic agent for PDT of the intraoperative resection cavity and interstitial PDT for inoperable HGGs. PDT remains a promising therapeutic approach that requires further study in HGGs. Use of 5-ALA PDT permits selective tumor targeting due to the intracellular metabolism of 5-ALA. The immunomodulatory effects of PDT further strengthen its use for treatment of HGGs and requires a better understanding. The combination of PDT with adjuvant therapies for HGGs will need to be studied in randomized, controlled studies.

151 citations

Journal ArticleDOI
TL;DR: A human clinical trial involving direct injection of MNPs into recurrent malignant brain tumors for thermotherapy has established their feasibility, safety and efficacy in patients, and future translational studies are in progress to understand the promising impact ofMNPs in the treatment of malignant head tumors.
Abstract: Magnetic nanoparticles (MNPs) represent a promising nanomaterial for the targeted therapy and imaging of malignant brain tumors. Conjugation of peptides or antibodies to the surface of MNPs allows direct targeting of the tumor cell surface and potential disruption of active signaling pathways present in tumor cells. Delivery of nanoparticles to malignant brain tumors represents a formidable challenge due to the presence of the blood–brain barrier and infiltrating cancer cells in the normal brain. Newer strategies permit better delivery of MNPs systemically and by direct convection-enhanced delivery to the brain. Completion of a human clinical trial involving direct injection of MNPs into recurrent malignant brain tumors for thermotherapy has established their feasibility, safety and efficacy in patients. Future translational studies are in progress to understand the promising impact of MNPs in the treatment of malignant brain tumors.

127 citations

Journal ArticleDOI
TL;DR: Treatment with IONPs resulted in a significant antitumor effect that was greater than with cetuximab alone due to more efficient, CD133-independent cellular targeting and uptake, and EGFR signaling alterations, EGFR internalization, and apoptosis induction in EGFR-expressing GSCs and neurospheres.
Abstract: Malignant gliomas remain aggressive and lethal primary brain tumors in adults. The epidermal growth factor receptor (EGFR) is frequently overexpressed in the most common malignant glioma, glioblastoma (GBM), and represents an important therapeutic target. GBM stem-like cells (GSCs) present in tumors are felt to be highly tumorigenic and responsible for tumor recurrence. Multifunctional magnetic iron-oxide nanoparticles (IONPs) can be directly imaged by magnetic resonance imaging (MRI) and designed to therapeutically target cancer cells. The targeting effects of IONPs conjugated to the EGFR inhibitor, cetuximab (cetuximab-IONPs), were determined with EGFR- and EGFRvIII-expressing human GBM neurospheres and GSCs. Transmission electron microscopy revealed cetuximab-IONP GBM cell binding and internalization. Fluorescence microscopy and Prussian blue staining showed increased uptake of cetuximab-IONPs by EGFR- as well as EGFRvIII-expressing GSCs and neurospheres in comparison to cetuximab or free IONPs. Treatment with cetuximab-IONPs resulted in a significant antitumor effect that was greater than with cetuximab alone due to more efficient, CD133-independent cellular targeting and uptake, EGFR signaling alterations, EGFR internalization, and apoptosis induction in EGFR-expressing GSCs and neurospheres. A significant increase in survival was found after cetuximab-IONP convection-enhanced delivery treatment of 3 intracranial rodent GBM models employing human EGFR-expressing GBM xenografts.

110 citations

Journal ArticleDOI
TL;DR: Cetuximab-IONPs were used in combination with single or multiple fractions of ionizing radiation for radiosensitization of EGFRvIII-overexpressing human GBM cells in vitro and in vivo after convection-enhanced delivery (CED) and a significant GBM antitumor effect was observed in vitro.
Abstract: The epidermal growth factor receptor deletion variant EGFRvIII is known to be expressed in a subset of patients with glioblastoma (GBM) tumors that enhances tumorigenicity and also accounts for radiation and chemotherapy resistance Targeting the EGFRvIII deletion mutant may lead to improved GBM therapy and better patient prognosis Multifunctional magnetic nanoparticles serve as a potential clinical tool that can provide cancer cell targeted drug delivery, imaging, and therapy Our previous studies have shown that an EGFRvIII-specific antibody and cetuximab (an EGFR- and EGFRvIII-specific antibody), when bioconjugated to IONPs (EGFRvIII-IONPs or cetuximab-IONPs respectively), can simultaneously provide sensitive cancer cell detection by magnetic resonance imaging (MRI) and targeted therapy of experimental GBM In this study, we investigated whether cetuximab-IONPs can additionally allow for the radiosensitivity enhancement of GBM Cetuximab-IONPs were used in combination with single (10 Gy × 1) or multiple fractions (10 Gy × 2) of ionizing radiation (IR) for radiosensitization of EGFRvIII-overexpressing human GBM cells in vitro and in vivo after convection-enhanced delivery (CED) A significant GBM antitumor effect was observed in vitro after treatment with cetuximab-IONPs and subsequent single or fractionated IR A significant increase in overall survival of nude mice implanted with human GBM xenografts was found after treatment by cetuximab-IONP CED and subsequent fractionated IR Increased DNA double strands breaks (DSBs), as well as increased reactive oxygen species (ROS) formation, were felt to represent the mediators of the observed radiosensitization effect with the combination therapy of IR and cetuximab-IONPs treatment

62 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the current clinical progress of phototherapies for cancer and discuss the emerging preclinical bioengineering approaches that have the potential to overcome challenges in this area and thus improve the efficiency and utility of such treatments are provided.
Abstract: Light-activated, photosensitizer-based therapies have been established as safe modalities of tumour ablation for numerous cancer indications. Two main approaches are available: photodynamic therapy, which results in localized chemical damage in the target lesions, and photothermal therapy, which results in localized thermal damage. Whereas the administration of photosensitizers is a key component of photodynamic therapy, exogenous photothermal contrast agents are not required for photothermal therapy but can enhance the efficiency and efficacy of treatment. Over the past decades, great strides have been made in the development of phototherapeutic drugs and devices as cancer treatments, but key challenges have restricted their widespread clinical use outside of certain dermatological indications. Improvements in the tumour specificity of photosensitizers, achieved through targeting or localized activation, could provide better outcomes with fewer adverse effects, as could combinations with chemotherapies or immunotherapies. In this Review, we provide an overview of the current clinical progress of phototherapies for cancer and discuss the emerging preclinical bioengineering approaches that have the potential to overcome challenges in this area and thus improve the efficiency and utility of such treatments.

1,197 citations

Journal ArticleDOI
TL;DR: A comprehensive review of literatures focusing on the active targeting of nanoparticles to cancer cells, including antibody and antibody fragment-based targeting, antigen-basedtargeting, aptamer- based targeting, as well as ligand-based aiming, are presented.
Abstract: Purpose Cancer is one of the leading causes of death, and thus, the scientific community has but great efforts to improve cancer management. Among the major challenges in cancer management is development of agents that can be used for early diagnosis and effective therapy. Conventional cancer management frequently lacks accurate tools for detection of early tumors and has an associated risk of serious side effects of chemotherapeutics. The need to optimize therapeutic ratio as the difference with which a treatment affects cancer cells versus healthy tissues lead to idea that it is needful to have a treatment that could act a the “magic bullet”—recognize cancer cells only. Nanoparticle platforms offer a variety of potentially efficient solutions for development of targeted agents that can be exploited for cancer diagnosis and treatment. There are two ways by which targeting of nanoparticles can be achieved, namely passive and active targeting. Passive targeting allows for the efficient localization of nanoparticles within the tumor microenvironment. Active targeting facilitates the active uptake of nanoparticles by the tumor cells themselves.

516 citations

Book ChapterDOI
01 Jan 1970
TL;DR: This chapter discusses different aspects of cancer, a group of many different disorders affecting the different parts of the body, and cancer of one part is quite different from cancer of another part.
Abstract: This chapter discusses different aspects of cancer. Many of the attitudes toward cancer today are similar to the popular prejudices that were held about infections before the germ theory was worked out and before the causes of different infections were understood. One of the popular misconceptions about cancer is that it is a single disease. In fact, cancer is a group of many different disorders affecting the different parts of the body, and cancer of one part is quite different from cancer of another part. It is a common belief that cancer is always incurable, but in truth, 70%–90% of patients can be completely cured of certain types of cancers. It is also believed that cancer can be transmitted by coming in contact with a cancer patient and that it is caused by dirty living, by knocks or blows, or by tinned foods. Doctors have recognized that lung cancer is associated with cigarette smoking even though they have not completely worked out the combination of chemicals that causes this effect.

403 citations

Journal ArticleDOI
TL;DR: This review highlights the methods of synthesis and presents the most recent reports in the literature regarding advances in drug delivery using IONPs-based systems, as well as their antimicrobial activity against different microorganisms.
Abstract: Medical applications and biotechnological advances, including magnetic resonance imaging, cell separation and detection, tissue repair, magnetic hyperthermia and drug delivery, have strongly benefited from employing iron oxide nanoparticles (IONPs) due to their remarkable properties, such as superparamagnetism, size and possibility of receiving a biocompatible coating. Ongoing research efforts focus on reducing drug concentration, toxicity, and other side effects, while increasing efficacy of IONPs-based treatments. This review highlights the methods of synthesis and presents the most recent reports in the literature regarding advances in drug delivery using IONPs-based systems, as well as their antimicrobial activity against different microorganisms. Furthermore, the toxicity of IONPs alone and constituting nanosystems is also addressed.

366 citations

Journal ArticleDOI
TL;DR: There are numerous challenges that must be addressed before this technique can progress to the clinic and this review discusses these challenges and highlights the current understanding of targeted magnetic hyperthermia.
Abstract: Hyperthermia, the mild elevation of temperature to 40-43°C, can induce cancer cell death and enhance the effects of radiotherapy and chemotherapy. However, achievement of its full potential as a clinically relevant treatment modality has been restricted by its inability to effectively and preferentially heat malignant cells. The limited spatial resolution may be circumvented by the intravenous administration of cancer-targeting magnetic nanoparticles that accumulate in the tumor, followed by the application of an alternating magnetic field to raise the temperature of the nanoparticles located in the tumor tissue. This targeted approach enables preferential heating of malignant cancer cells whilst sparing the surrounding normal tissue, potentially improving the effectiveness and safety of hyperthermia. Despite promising results in preclinical studies, there are numerous challenges that must be addressed before this technique can progress to the clinic. This review discusses these challenges and highlights the current understanding of targeted magnetic hyperthermia.

302 citations