scispace - formally typeset
Search or ask a question
Author

Alexey A. Soluyanov

Bio: Alexey A. Soluyanov is an academic researcher from University of Zurich. The author has contributed to research in topics: Topological insulator & Weyl semimetal. The author has an hindex of 26, co-authored 69 publications receiving 6113 citations. Previous affiliations of Alexey A. Soluyanov include Saint Petersburg State University & Rutgers University.


Papers
More filters
Journal ArticleDOI
26 Nov 2015-Nature
TL;DR: This work proposes the existence of a previously overlooked type of Weyl fermion that emerges at the boundary between electron and hole pockets in a new phase of matter and discovers a type-II Weyl point, which is still a protected crossing, but appears at the contact of electron and Hole pockets in type- II Weyl semimetals.
Abstract: Fermions--elementary particles such as electrons--are classified as Dirac, Majorana or Weyl. Majorana and Weyl fermions had not been observed experimentally until the recent discovery of condensed matter systems such as topological superconductors and semimetals, in which they arise as low-energy excitations. Here we propose the existence of a previously overlooked type of Weyl fermion that emerges at the boundary between electron and hole pockets in a new phase of matter. This particle was missed by Weyl because it breaks the stringent Lorentz symmetry in high-energy physics. Lorentz invariance, however, is not present in condensed matter physics, and by generalizing the Dirac equation, we find the new type of Weyl fermion. In particular, whereas Weyl semimetals--materials hosting Weyl fermions--were previously thought to have standard Weyl points with a point-like Fermi surface (which we refer to as type-I), we discover a type-II Weyl point, which is still a protected crossing, but appears at the contact of electron and hole pockets in type-II Weyl semimetals. We predict that WTe2 is an example of a topological semimetal hosting the new particle as a low-energy excitation around such a type-II Weyl point. The existence of type-II Weyl points in WTe2 means that many of its physical properties are very different to those of standard Weyl semimetals with point-like Fermi surfaces.

2,055 citations

Journal ArticleDOI
TL;DR: This code works in the tight-binding framework, which can be generated by another software package Wannier90 Mostofi et al. (2008), and can help to classify the topological phase of a given materials by calculating the Wilson loop, and get the surface state spectrum.

1,566 citations

Journal ArticleDOI
06 Oct 2016-Nature
TL;DR: It is argued that the presence of the nodal-chain fermions will result in anomalous magnetotransport properties, distinct from those of materials exhibiting previously known excitations.
Abstract: A hitherto unrecognized type of fermionic excitation in metals is described, which forms a chain of connected loops in momentum space (a nodal chain) along which conduction and valence bands touch. The elementary fermionic excitations—or quasiparticles—that characterize the behaviour of electrons in solids are proving a rich testing ground for exploring exotic physics, with possible practical ramifications. The excitations that give rise to topological insulators, for example, hold promise for the realization of a so-called topological quantum computer. But the full range of possible quasiparticle states remains to be discovered, as exemplified by the excitations described here. Tomas Bzdusek and colleagues describe a new family of quasiparticle excitation in metals that forms a nodal chain—a chain of connected loops in momentum space—along which conduction and valence bands touch. The authors predict the materials in which this excitation might be found, and offer some initial thoughts on the physical properties that might result. The band theory of solids is arguably the most successful theory of condensed-matter physics, providing a description of the electronic energy levels in various materials. Electronic wavefunctions obtained from the band theory enable a topological characterization of metals for which the electronic spectrum may host robust, topologically protected, fermionic quasiparticles. Many of these quasiparticles are analogues of the elementary particles of the Standard Model1,2,3,4,5,6,7,8,9,10, but others do not have a counterpart in relativistic high-energy theories11,12,13,14,15,16,17,18. A complete list of possible quasiparticles in solids is lacking, even in the non-interacting case. Here we describe the possible existence of a hitherto unrecognized type of fermionic excitation in metals. This excitation forms a nodal chain—a chain of connected loops in momentum space—along which conduction and valence bands touch. We prove that the nodal chain is topologically distinct from previously reported excitations. We discuss the symmetry requirements for the appearance of this excitation and predict that it is realized in an existing material, iridium tetrafluoride (IrF4), as well as in other compounds of this class of materials. Using IrF4 as an example, we provide a discussion of the topological surface states associated with the nodal chain. We argue that the presence of the nodal-chain fermions will result in anomalous magnetotransport properties, distinct from those of materials exhibiting previously known excitations.

499 citations

Journal ArticleDOI
TL;DR: In this paper, the weak and strong topological indices in noncentrosymmetric time-reversal invariant insulators are calculated in 2D and 3D, respectively.
Abstract: We consider the problem of calculating the weak and strong topological indices in noncentrosymmetric time-reversal ($\mathcal{T}$) invariant insulators. In 2D we use a gauge corresponding to hybrid Wannier functions that are maximally localized in one dimension. Although this gauge is not smoothly defined on the two torus, it respects the $\mathcal{T}$ symmetry of the system and allows for a definition of the ${\mathbb{Z}}_{2}$ invariant in terms of time-reversal polarization. In 3D we apply the 2D approach to $\mathcal{T}$-invariant planes. We illustrate the method with first-principles calculations on GeTe and on HgTe under $[001]$ and $[111]$ strain. Our approach differs from ones used previously for noncentrosymmetric materials and should be easier to implement in ab initio code packages.

370 citations

Journal ArticleDOI
TL;DR: With no strain, the number of observable surface Fermi arcs in this material is 2-the smallest number of arcs consistent with time-reversal symmetry, opening a wide range of possible experimental realizations of different topological semimetal phases.
Abstract: Crystallographic data from x-ray diffraction experiments is used in $a\phantom{\rule{0}{0ex}}b$ $i\phantom{\rule{0}{0ex}}n\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}t\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}o$ calculations to show that MoTe${}_{2}$ is a candidate type-II Weyl semimetal.

364 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors examined the methods used to synthesize transition metal dichalcogenides (TMDCs) and their properties with particular attention to their charge density wave, superconductive and topological phases, along with their applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.
Abstract: Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin–orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties. Two-dimensional transition metal dichalcogenides (TMDCs) exhibit attractive electronic and mechanical properties. In this Review, the charge density wave, superconductive and topological phases of TMCDs are discussed, along with their synthesis and applications in devices with enhanced mobility and with the use of strain engineering to improve their properties.

3,436 citations

Journal ArticleDOI
TL;DR: Weyl and Dirac semimetals as discussed by the authors are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry, and they have generated much recent interest.
Abstract: Weyl and Dirac semimetals are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry. As three-dimensional analogs of graphene, they have generated much recent interest. Deep connections exist with particle physics models of relativistic chiral fermions, and, despite their gaplessness, to solid-state topological and Chern insulators. Their characteristic electronic properties lead to protected surface states and novel responses to applied electric and magnetic fields. The theoretical foundations of these phases, their proposed realizations in solid-state systems, and recent experiments on candidate materials as well as their relation to other states of matter are reviewed.

3,407 citations

Journal ArticleDOI
TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
Abstract: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light. Drawing inspiration from the discovery of the quantum Hall effects and topological insulators in condensed matter, recent advances have shown how to engineer analogous effects also for photons, leading to remarkable phenomena such as the robust unidirectional propagation of light, which hold great promise for applications. Thanks to the flexibility and diversity of photonics systems, this field is also opening up new opportunities to realize exotic topological models and to probe and exploit topological effects in new ways. This article reviews experimental and theoretical developments in topological photonics across a wide range of experimental platforms, including photonic crystals, waveguides, metamaterials, cavities, optomechanics, silicon photonics, and circuit QED. A discussion of how changing the dimensionality and symmetries of photonics systems has allowed for the realization of different topological phases is offered, and progress in understanding the interplay of topology with non-Hermitian effects, such as dissipation, is reviewed. As an exciting perspective, topological photonics can be combined with optical nonlinearities, leading toward new collective phenomena and novel strongly correlated states of light, such as an analog of the fractional quantum Hall effect.

3,052 citations