scispace - formally typeset
Search or ask a question
Author

Alexey Samsonov

Bio: Alexey Samsonov is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Iterative reconstruction & Medicine. The author has an hindex of 28, co-authored 74 publications receiving 2284 citations. Previous affiliations of Alexey Samsonov include University of Utah & Scientific Computing and Imaging Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: Three quantitative MRI methods for characterizing white matter (WM) microstructural properties are reviewed, all of which measure complementary aspects of how water interacts with the tissue environment.
Abstract: The image contrast in magnetic resonance imaging (MRI) is highly sensitive to several mechanisms that are modulated by the properties of the tissue environment. The degree and type of contrast weighting may be viewed as image filters that accentuate specific tissue properties. Maps of quantitative measures of these mechanisms, akin to microstructural/environmental-specific tissue stains, may be generated to characterize the MRI and physiological properties of biological tissues. In this article, three quantitative MRI (qMRI) methods for characterizing white matter (WM) microstructural properties are reviewed. All of these measures measure complementary aspects of how water interacts with the tissue environment. Diffusion MRI, including diffusion tensor imaging, characterizes the diffusion of water in the tissues and is sensitive to the microstructural density, spacing, and orientational organization of tissue membranes, including myelin. Magnetization transfer imaging characterizes the amount and degree of magnetization exchange between free water and macromolecules like proteins found in the myelin bilayers. Relaxometry measures the MRI relaxation constants T1 and T2, which in WM have a component associated with the water trapped in the myelin bilayers. The conduction of signals between distant brain regions occurs primarily through myelinated WM tracts; thus, these methods are potential indicators of pathology and structural connectivity in the brain. This article provides an overview of the qMRI stain mechanisms, acquisition and analysis strategies, and applications for these qMRI stains.

387 citations

Journal ArticleDOI
TL;DR: A new fully automated musculoskeletal tissue segmentation method using deep convolutional neural network (CNN) and three‐dimensional (3D) simplex deformable modeling to improve the accuracy and efficiency of cartilage and bone segmentation within the knee joint.
Abstract: Purpose To describe and evaluate a new fully automated musculoskeletal tissue segmentation method using deep convolutional neural network (CNN) and three-dimensional (3D) simplex deformable modeling to improve the accuracy and efficiency of cartilage and bone segmentation within the knee joint. Methods A fully automated segmentation pipeline was built by combining a semantic segmentation CNN and 3D simplex deformable modeling. A CNN technique called SegNet was applied as the core of the segmentation method to perform high resolution pixel-wise multi-class tissue classification. The 3D simplex deformable modeling refined the output from SegNet to preserve the overall shape and maintain a desirable smooth surface for musculoskeletal structure. The fully automated segmentation method was tested using a publicly available knee image data set to compare with currently used state-of-the-art segmentation methods. The fully automated method was also evaluated on two different data sets, which include morphological and quantitative MR images with different tissue contrasts. Results The proposed fully automated segmentation method provided good segmentation performance with segmentation accuracy superior to most of state-of-the-art methods in the publicly available knee image data set. The method also demonstrated versatile segmentation performance on both morphological and quantitative musculoskeletal MR images with different tissue contrasts and spatial resolutions. Conclusion The study demonstrates that the combined CNN and 3D deformable modeling approach is useful for performing rapid and accurate cartilage and bone segmentation within the knee joint. The CNN has promising potential applications in musculoskeletal imaging. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine.

247 citations

Journal ArticleDOI
TL;DR: This study demonstrated the feasibility of using a fully automated deep learning-based cartilage lesion detection system to evaluate the articular cartilage of the knee joint with high diagnostic performance and good intraobserver agreement for detecting cartilage degeneration and acute cartilage injury.
Abstract: Purpose To determine the feasibility of using a deep learning approach to detect cartilage lesions (including cartilage softening, fibrillation, fissuring, focal defects, diffuse thinning due to cartilage degeneration, and acute cartilage injury) within the knee joint on MR images. Materials and Methods A fully automated deep learning-based cartilage lesion detection system was developed by using segmentation and classification convolutional neural networks (CNNs). Fat-suppressed T2-weighted fast spin-echo MRI data sets of the knee of 175 patients with knee pain were retrospectively analyzed by using the deep learning method. The reference standard for training the CNN classification was the interpretation provided by a fellowship-trained musculoskeletal radiologist of the presence or absence of a cartilage lesion within 17 395 small image patches placed on the articular surfaces of the femur and tibia. Receiver operating curve (ROC) analysis and the κ statistic were used to assess diagnostic performance and intraobserver agreement for detecting cartilage lesions for two individual evaluations performed by the cartilage lesion detection system. Results The sensitivity and specificity of the cartilage lesion detection system at the optimal threshold according to the Youden index were 84.1% and 85.2%, respectively, for evaluation 1 and 80.5% and 87.9%, respectively, for evaluation 2. Areas under the ROC curve were 0.917 and 0.914 for evaluations 1 and 2, respectively, indicating high overall diagnostic accuracy for detecting cartilage lesions. There was good intraobserver agreement between the two individual evaluations, with a κ of 0.76. Conclusion This study demonstrated the feasibility of using a fully automated deep learning-based cartilage lesion detection system to evaluate the articular cartilage of the knee joint with high diagnostic performance and good intraobserver agreement for detecting cartilage degeneration and acute cartilage injury. © RSNA, 2018 Online supplemental material is available for this article .

186 citations

Journal ArticleDOI
TL;DR: The proposed p‐CS regularization strategy uses smoothness of signal evolution in the parametric dimension within compressed sensing framework (p‐CS) to provide accurate and precise estimation of parametric maps from undersampled data.
Abstract: MR parameter mapping requires sampling along additional (parametric) dimension, which often limits its clinical appeal due to a several-fold increase in scan times compared to conventional anatomic imaging. Data undersampling combined with parallel imaging is an attractive way to reduce scan time in such applications. However, inherent SNR penalties of parallel MRI due to noise amplification often limit its utility even at moderate acceleration factors, requiring regularization by prior knowledge. In this work, we propose a novel regularization strategy, which uses smoothness of signal evolution in the parametric dimension within compressed sensing framework (p-CS) to provide accurate and precise estimation of parametric maps from undersampled data. The performance of the method was demonstrated with variable flip angle T1 mapping and compared favorably to two representative reconstruction approaches, image space-based total variation regularization and an analytical model-based reconstruction. The proposed p-CS regularization was found to provide efficient suppression of noise amplification and preservation of parameter mapping accuracy without explicit utilization of analytical signal models. The developed method may facilitate acceleration of quantitative MRI techniques that are not suitable to model-based reconstruction because of complex signal models or when signal deviations from the expected analytical model exist. Magn Reson Med 70:1263–1273, 2013. © 2012 Wiley Periodicals, Inc.

128 citations

Journal ArticleDOI
TL;DR: Improved quantification of fat is demonstrated, with independent estimation of T*2 for water and fat using phantom experiments, and the tradeoffs in algorithm stability and accuracy between multiexponential and single exponential techniques are discussed.
Abstract: Noninvasive biomarkers of intracellular accumulation of fat within the liver (hepatic steatosis) are urgently needed for detection and quantitative grading of nonalcoholic fatty liver disease, the most common cause of chronic liver disease in the United States. Accurate quantification of fat with MRI is challenging due the presence of several confounding factors, including T*(2) decay. The specific purpose of this work is to quantify the impact of T*(2) decay and develop a multiexponential T*(2) correction method for improved accuracy of fat quantification, relaxing assumptions made by previous T*(2) correction methods. A modified Gauss-Newton algorithm is used to estimate the T*(2) for water and fat independently. Improved quantification of fat is demonstrated, with independent estimation of T*(2) for water and fat using phantom experiments. The tradeoffs in algorithm stability and accuracy between multiexponential and single exponential techniques are discussed.

90 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Computer and Robot Vision Vol.
Abstract: Computer and Robot Vision Vol. 1, by R.M. Haralick and Linda G. Shapiro, Addison-Wesley, 1992, ISBN 0-201-10887-1.

1,426 citations

Journal ArticleDOI
TL;DR: A new approach to autocalibrating, coil‐by‐coil parallel imaging reconstruction, is presented, a generalized reconstruction framework based on self‐consistency that can accurately reconstruct images from arbitrary k‐space sampling patterns.
Abstract: A new approach to autocalibrating, coil-by-coil parallel imaging reconstruction, is presented. It is a generalized reconstruction framework based on self-consistency. The reconstruction problem is formulated as an optimization that yields the most consistent solution with the calibration and acquisition data. The approach is general and can accurately reconstruct images from arbitrary k-space sampling patterns. The formulation can flexibly incorporate additional image priors such as off-resonance correction and regularization terms that appear in compressed sensing. Several iterative strategies to solve the posed reconstruction problem in both image and k-space domain are presented. These are based on a projection over convex sets and conjugate gradient algorithms. Phantom and in vivo studies demonstrate efficient reconstructions from undersampled Cartesian and spiral trajectories. Reconstructions that include off-resonance correction and nonlinear l(1)-wavelet regularization are also demonstrated.

793 citations

Journal ArticleDOI
TL;DR: Artificial intelligence algorithms integrating chest CT findings with clinical symptoms, exposure history and laboratory testing to rapidly diagnose patients who are positive for COVID-19 with similar accuracy as compared to a senior radiologist.
Abstract: For diagnosis of coronavirus disease 2019 (COVID-19), a SARS-CoV-2 virus-specific reverse transcriptase polymerase chain reaction (RT-PCR) test is routinely used. However, this test can take up to 2 d to complete, serial testing may be required to rule out the possibility of false negative results and there is currently a shortage of RT-PCR test kits, underscoring the urgent need for alternative methods for rapid and accurate diagnosis of patients with COVID-19. Chest computed tomography (CT) is a valuable component in the evaluation of patients with suspected SARS-CoV-2 infection. Nevertheless, CT alone may have limited negative predictive value for ruling out SARS-CoV-2 infection, as some patients may have normal radiological findings at early stages of the disease. In this study, we used artificial intelligence (AI) algorithms to integrate chest CT findings with clinical symptoms, exposure history and laboratory testing to rapidly diagnose patients who are positive for COVID-19. Among a total of 905 patients tested by real-time RT-PCR assay and next-generation sequencing RT-PCR, 419 (46.3%) tested positive for SARS-CoV-2. In a test set of 279 patients, the AI system achieved an area under the curve of 0.92 and had equal sensitivity as compared to a senior thoracic radiologist. The AI system also improved the detection of patients who were positive for COVID-19 via RT-PCR who presented with normal CT scans, correctly identifying 17 of 25 (68%) patients, whereas radiologists classified all of these patients as COVID-19 negative. When CT scans and associated clinical history are available, the proposed AI system can help to rapidly diagnose COVID-19 patients.

701 citations

01 Jan 2016
TL;DR: This book helps people to enjoy a good book with a cup of coffee in the afternoon, instead they juggled with some malicious bugs inside their laptop.
Abstract: Thank you for downloading magnetic resonance imaging physical principles and sequence design. As you may know, people have look numerous times for their chosen books like this magnetic resonance imaging physical principles and sequence design, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they juggled with some malicious bugs inside their laptop.

695 citations

Journal ArticleDOI
TL;DR: Magnetic resonance (MR) techniques can decompose the liver signal into its fat and water signal components and therefore assess liver fat more directly than CT or US and are likely to be commercially available soon.
Abstract: Hepatic steatosis is characterized by abnormal and excessive accumulation of lipids within hepatocytes. It is an important feature of diffuse liver disease, and the histological hallmark of non-alcoholic fatty liver disease (NAFLD). Other conditions associated with steatosis include alcoholic liver disease, viral hepatitis, HIV and genetic lipodystrophies, cystic fibrosis liver disease, and hepatotoxicity from various therapeutic agents. Liver biopsy, the current clinical gold standard for assessment of liver fat, is invasive and has sampling errors, and is not optimal for screening, monitoring, clinical decision making, or well-suited for many types of research studies. Non-invasive methods that accurately and objectively quantify liver fat are needed. Ultrasound (US) and computed tomography (CT) can be used to assess liver fat but have limited accuracy as well as other limitations. Magnetic resonance (MR) techniques can decompose the liver signal into its fat and water signal components and therefore assess liver fat more directly than CT or US. Most magnetic resonance (MR) techniques measure the signal fat-fraction (the fraction of the liver MR signal attributable to liver fat), which may be confounded by numerous technical and biological factors and may not reliably reflect fat content. By addressing the factors that confound the signal fat-fraction, advanced MR techniques measure the proton density fat-fraction (the fraction of the liver proton density attributable to liver fat), which is a fundamental tissue property and a direct measure of liver fat content. These advanced techniques show promise for accurate fat quantification and are likely to be commercially available soon.

527 citations