scispace - formally typeset
Search or ask a question
Author

Alexis Munyentwali

Bio: Alexis Munyentwali is an academic researcher. The author has contributed to research in topics: Vegetable oil refining & Raw material. The author has an hindex of 1, co-authored 1 publications receiving 5 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reported about biodiesel production from crude palm oil on a pilot plant scale, subsequent to a laboratory scale investigation of biodiesel synthesis from various vegetable oil feedstocks.
Abstract: As global warming and climate change issues are defying modern society sustainable development; biofuels, biodiesel included, are among promising solutions. Biodiesel is generally produced from renewable vegetable oils and animal fats via acid or base catalyzed transesterification. Depending on regional availability, biodiesel production feedstocks vary from vegetable oils such as rapeseed oil, soya oil, palm oil, and jatropha oil, to used cooking oil and animal fats, with each type of feedstock presenting its own process challenges rooting from its chemical composition. This paper reports about biodiesel production from crude palm oil on a pilot plant scale, subsequent to a laboratory scale investigation of biodiesel synthesis from various vegetable oil feedstocks. Prior to transesterification, pretreatment processes have been applied due to the fact that crude palm oil as a biodiesel feedstock possesses a high free fatty acid(FFA) content, water, solid impurities and waxes, all of which hinder an efficient transesterification if not dealt with accordingly. Those processes are mainly filtering, water evaporation, and FFA esterification which is done with 99.9% methanol and 96% sulfuric acid as a catalyst. In fact, the acid esterification process successfully handles the raw palm oil despite its high FFA content of 16.9%, and biodiesel is produced from that feedstock with a yield of 90.4%. A two steps transesterification is carried out using potassium methylate 32% in methanol as a catalyst and anhydrous methanol too. Laboratory analyses have also been used to monitor the process and assess the final product quality. Furthermore, biodiesel cold filtering and top layer intake tank systems of a filling station, both proved to be efficient at helping to obtain a refined product by getting rid of suspensions appearing in biodiesel at room temperature due to sterol glucosides and waxes.

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used methanol as a reactant for esterification and transesterification of palm oil sludge and found that the optimum molar ratio of methanoline to sludge was 20:1 (6% alum catalyst), while the optimum concentration of transesterion was 1.5% of KOH.

69 citations

01 Jan 2017
TL;DR: In this article, the conversion of palm oil sludge was studied by esterification and transesterification which used methanol as a reactant, and the yield of biodiesel production was 93%, the density and kinematic viscosity were 0.864 and 12.8mm2-s−1, respectively.
Abstract: Abstract Conversion of palm oil sludge was studied by esterification and transesterification which used methanol as a reactant. The esterification of palm oil sludge was performed by variation of molar ratios of methanol to palm oil sludge (5:1, 10:1, 15:1, 20:1, and 25:1) and percentages of alum catalyst (3–7 wt%) at 60 °C for 3 h with stirring rate 300 rpm. Transesterification was also carried out by variation of KOH (0.5–2.5 wt%) at 60 °C and stirring rate 300 rpm for 1 h. The optimum molar ratio of methanol to palm oil sludge was 20:1 (6% alum catalyst). Meanwhile, the optimum concentration for transesterification was 1.5% of KOH. The yield of biodiesel production was 93%, the density and kinematic viscosity were 0.864 g mL−1 and 12.8 mm2 s−1, respectively. The existence of ester compounds in the product was shown by Fourier Transform Infrared Spectrometry spectrum data of carbonyl group (C O) at 1744 cm−1 and C O of ester at 1234; 1119 and 1026 cm−1. Gas Chromatograph-Mass Spectrometry analysis showed the biodiesel product contains palmitic acid methyl ester (23.4%), trans-methyl oleate (75.5%), cis-methyl oleate (

48 citations

Journal ArticleDOI
TL;DR: In this article, solid acids, such as SiO2-SO3H/CoFe2O4 and superhydrophobic poly(vinylsulfonic-co-divinylbenzene) (PVS-DVB), were synthesized and characterized via X-ray diffraction, vibrating sampling magnetometer, field enhanced scanning electron microscopy-energy dispersive x-ray, and transmission electron microscope.
Abstract: Waste seed of Nephelium lappaceum or rambutan fruit with high fat content is a promising raw material for low-cost biodiesel production. Solid acids, such as SiO2-SO3H/CoFe2O4 and superhydrophobic poly(vinylsulfonic-co-divinylbenzene) (PVS-DVB), were synthesized and characterized via X-ray diffraction, vibrating sampling magnetometer, field enhanced scanning electron microscopy–energy dispersive X-ray, and transmission electron microscopy. The magnetic catalysts possessed a mesoporous structure with an average diameter of 100 nm. The transesterification rate could reach 39%, 68%, and 98% when SiO2-SO3H/CoFe2O4, PVS-DVB, and H2SO4 acid were used, respectively, at 65°C for 4–10 h. The magnetic acids were readily recovered and reused with negligible activity loss. Fatty acid methyl ester (FAME) was determined through gas chromatography–mass spectrometry. The effects of oil-to-methanol molar (O/M) ratio, reaction time, and catalyst amount on FAME conversion were studied to optimize the transesterification conditions. Rambutan oil biodiesel is within the specifications of the American Standard Test Method (ASTM D6751) and European standards (EN 14214). © 2015 American Institute of Chemical Engineers Environ Prog, 2015

12 citations

Proceedings ArticleDOI
11 Jan 2019
TL;DR: In this article, an experimental work has been carried out to analyze the performance and emissions characteristics of a single cylinder compression ignition DI engine fuelled with the blends of biodiesel at the different engine speed.
Abstract: In recent years, many researches have been performed to find suitable alternative fuels to petroleum products. In the present investigation, an experimental work has been carried out to analyze the performance and emissions characteristics of a single cylinder compression ignition DI engine fuelled with the blends of biodiesel at the different engine speed. The performance parameters evaluated were torque, brake power (BP), brake mean effective pressure (BMEP) and the emissions such as carbon monoxide (CO), carbon dioxide (CO2) and unburned hydrocarbon (UHC). The results of experimental investigation with biodiesel blends with diesel are compared with that of diesel. The performance parameter in terms of torque and BMEP are 12.5 % and 9% less for B5 and B10 than diesel respectively. BP for diesel was higher about 6 % compared to biodiesel blends. The results indicated that the UHC, CO and CO2 emissions are slightly less than diesel; UHC emissions were also observed to be 4% less for B5 and B10 compared to diesel, CO emissions were also observed to be 5% less for B5 and B10 compared to diesel and CO2 emissions were also observed to be 1% less for B5 and B10 compared to diesel. In a nutshell, performance characteristics for biodiesel were lower compared to diesel which not much significant difference, while emission characteristics for biodiesel blend were improved compared to diesel.

2 citations

Journal ArticleDOI
TL;DR: In this article, the results of high-speed engine combustion from consuming blended POB fuel were investigated the influences of exhaust emission under speed engine operation of 2,000rpm and 3,000 rpm.
Abstract: Biofuel modifications play a major role in a substitution for fossil fuel to be used in diesel engines and reducing exhaust emission. The most amounts of crude palm oil produced from Asian region can be an alternative fuel, sustainably. By the modifying crude palm oil into pure palm oil biodiesel (POB100), alkali trans-esterification procedure was operated. In the present, the high-quality POB products have been investigated considerably for alternative fuel in 4-cylinders high-speed diesel engine. The aim of this paper is to study in the improvement of POB quality by repeated-distillation and blending POB with nanoZnO additive. The high-speed engine combustion from consuming blended POB fuel were investigated the influences of exhaust emission under speed engine operation of 2,000 rpm and 3,000 rpm. The experimental results were shown that the POB fuel yielded at 84.54% from using 400 g. of raw materials. Both of redistilled POB and POB blended with nanoZnO additive showed the improvement of physical properties including viscosity, specific gravity and cetane number values being under ASTM standard values for high-speed engine. In addition, the results of exhaust emission from the engine showed the effective decrease of carbon monoxide (CO), carbon dioxide (CO2) around 13% due to using redistilled POB and POB blended nanoZnO additive compared with diesel fuel. Unburned hydrocarbon (HC) and nitric oxide (NOx) emissions of the diesel fuel condition. Therefore, this study suggests that nanoZnO blending POB in the small fraction about 0.005 wt% is able to provide the high potentiality for as a clean and alternative fuel.

1 citations