scispace - formally typeset
Search or ask a question
Author

Alfred Leipertz

Bio: Alfred Leipertz is an academic researcher from University of Erlangen-Nuremberg. The author has contributed to research in topics: Raman spectroscopy & Raman scattering. The author has an hindex of 50, co-authored 442 publications receiving 9663 citations. Previous affiliations of Alfred Leipertz include Ruhr University Bochum & University of New South Wales.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors assess the potential for future progress, as well as assess the benefits offered by competitor technologies, in order to make responsible recommendations for future directions, and discuss the factors impacting that future.
Abstract: Internal combustion (IC) engines operating on fossil fuel oil provide about 25% of the world’s power (about 3000 out of 13,000 million tons oil equivalent per year—see Figure 1), and in doing so, they produce about 10% of the world’s greenhouse gas (GHG) emissions (Figure 2). Reducing fuel consumption and emissions has been the goal of engine researchers and manufacturers for years, as can be seen in the two decades of ground-breaking peer-reviewed articles published in this International Journal of Engine Research (IJER). Indeed, major advances have been made, making today’s IC engine a technological marvel. However, recently, the reputation of IC engines has been dealt a severe blow by emission scandals that threaten the ability of this technology to make significant and further contributions to the reduction of transportation sector emissions. In response, there have been proposals to replace vehicle IC engines with electric-drives with the intended goals of further reducing fuel consumption and emissions, and to decrease vehicle GHG emissions. Indeed, some potential students and researchers are being dissuaded from seeking careers in IC engine research due to disparaging statements made in the popular press and elsewhere that disproportionately blame IC engines for increasing atmospheric GHGs. Without a continuous influx of enthusiastic, welltrained engineers into the profession, the potential further benefits that improved IC engines can still provide will not be realized. As responsible automotive engineers and as stewards of the environment for future generations, it is up to our community to make an honest assessment of the progress made in the development of IC engines over the past century, with their almost universal adoption to meet the world’s mobility and power generation needs. Considering that the maturity of IC engine technology is something that many other technologies/possibilities do not have, we also need to assess the potential for future progress, as well as to assess the benefits offered by competitor technologies, in order to make responsible recommendations for future directions. Factors impacting that future are discussed in this editorial and include the following:

365 citations

Journal ArticleDOI
TL;DR: The density, refractive index, interfacial tension, and viscosity of ionic liquids (ILs) were studied in dependence on temperature at atmospheric pressure both by conventional techniques and by surface light scattering (SLS).
Abstract: The density, refractive index, interfacial tension, and viscosity of ionic liquids (ILs) [EMIM][EtSO 4] (1-ethyl-3-methylimidazolium ethylsulfate), [EMIM][NTf 2] (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), [EMIM][N(CN) 2] (1-ethyl-3-methylimidazolium dicyanimide), and [OMA][NTf 2] (trioctylmethylammonium bis(trifluoromethylsulfonyl)imide) were studied in dependence on temperature at atmospheric pressure both by conventional techniques and by surface light scattering (SLS). A vibrating tube densimeter was used for the measurement of density at temperatures from (273.15 to 363.15) K and the results have an expanded uncertainty ( k = 2) of +/-0.02%. Using an Abbe refractometer, the refractive index was measured for temperatures between (283.15 and 313.15) K with an expanded uncertainty ( k = 2) of about +/-0.0005. The interfacial tension was obtained from the pendant drop technique at a temperature of 293.15 K with an expanded uncertainty ( k = 2) of +/-1%. For higher and lower temperatures, the interfacial tension was estimated by an adequate prediction scheme based on the datum at 293.15 K and the temperature dependence of density. For the ILs studied within this work, at a first order approximation, the quantity directly accessible by the SLS technique was the ratio of surface tension to dynamic viscosity. By combining the experimental results of the SLS technique with density and interfacial tension from conventional techniques, the dynamic viscosity could be obtained for temperatures between (273.15 and 333.15) K with an estimated expanded uncertainty ( k = 2) of less than +/-3%. The measured density, refractive index, and viscosity are represented by interpolating expressions with differences between the experimental and calculated values that are comparable with but always smaller than the expanded uncertainties ( k = 2). Besides a comparison with the literature, the influence of structural variations on the thermophysical properties of the ILs is discussed in detail. The viscosities mostly agree with values reported in the literature within the combined estimated expanded uncertainties ( k = 2) of the measurements while our density and interfacial tension data differ by more than +/-1% and +/-5%.

300 citations

Journal ArticleDOI
TL;DR: To reveal the impact of methylating the C2 position and changing the alkyl side chain length of the imidazolium a detailed assignment of the individual peaks is followed by a comparative discussion of the spectral features also considering already published work.
Abstract: Methylation of the C2 position of 1,3-dialkylimidazolium based ionic liquids disrupts the predominant hydrogen-bonding interaction between cation and anion leading to unexpected changes of the physicochemical properties. We found the viscosity of 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide [C2C1C1Im][Tf2N], for example, to be about three times higher than that of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C2C1Im][Tf2N]. In order to explain these macroscopic changes upon methylation we investigated the vibrational as well as the magnetic resonance structure of [Tf2N]− salts involving the cations 1-ethyl-3-methylimidazolium [C2C1Im]+, 1-ethyl-2,3-dimethylimidazolium [C2C1C1Im]+, 1-butyl-3-methylimidazolium [C4C1Im]+, and 1-butyl-2,3-dimethylimidazolium [C4C1C1Im]+ by means of Fourier-transform infrared (FTIR), Raman and 13C NMR as well as 1H NMR spectroscopy aiming a better microscopic understanding of the cation–anion interaction. To reveal the impact of methylating the C2 position and changing the alkyl side chain length of the imidazolium a detailed assignment of the individual peaks is followed by a comparative discussion of the spectral features also considering already published work. Our spectroscopic findings deduce electron density changes leading to changes in the position and strength of interionic interactions and reduced configurational variations. Both facts are represented on a macroscopic level by the viscosity and melting point. Therefore changes on a macroscopic level clearly express molecular alterations which in turn can be observed using spectroscopic methods as Raman, IR and NMR.

281 citations

Journal ArticleDOI
TL;DR: The vibrational structure of two room-temperature ionic liquids with the cation 1-ethyl-3-methylimidazolium and the respective anions bis(trifluoromethylsulfonyl)imide and ethyls sulfurate is investigated and compares to previous studies of single ions available in the literature shows good agreement.
Abstract: The vibrational structure of two room-temperature ionic liquids with the cation 1-ethyl-3-methylimidazolium [EMIM] and the respective anions bis(trifluoromethylsulfonyl)imide [TFSI] and ethylsulfate [EtOSO3] is investigated. In particular, attenuated total reflection (ATR) infrared (IR) as well as Raman spectra in the spectral range from 500 to 3500 cm−1 have been recorded and analyzed. Moreover, the depolarization ratios of the Raman lines are determined. The individual peaks are assigned to the corresponding vibrational modes of the molecules. While the CH stretching region around 3000 cm−1 is dominating in Raman spectra, it is remarkably weak in IR spectra. Finally, the results for 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide are compared to previous studies of single ions available in the literature. This comparison shows good agreement.

268 citations

Journal ArticleDOI
TL;DR: In this paper, the laser light sheet and shadowgraph techniques have been applied to investigate cavitation phenomena in the spray hole of real size diesel injection nozzles and the breakup at spray hole exit.

195 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a survey on the latest most representative developments and progress concerning ionic liquids, from their fundamental properties to their applications in catalytic processes, is presented, highlighting their emerging use for biomass treatment and transformation.
Abstract: This review gives a survey on the latest most representative developments and progress concerning ionic liquids, from their fundamental properties to their applications in catalytic processes. It also highlights their emerging use for biomass treatment and transformation.

1,471 citations

Book
01 Dec 1988
TL;DR: In this paper, the basic processes in Atomization are discussed, and the drop size distributions of sprays are discussed.Preface 1.General Considerations 2.Basic Processes of Atomization 3.Drop Size Distributions of Sprays 4.Atomizers 5.Flow in Atomizers 6.AtOMizer Performance 7.External Spray Charcteristics 8.Drop Evaporation 9.Drop Sizing Methods Index
Abstract: Preface 1.General Considerations 2.Basic Processes in Atomization 3.Drop Size Distributions of Sprays 4.Atomizers 5.Flow in Atomizers 6.Atomizer Performance 7.External Spray Charcteristics 8.Drop Evaporation 9.Drop Sizing Methods Index

1,214 citations

Journal ArticleDOI
TL;DR: The current state-of-the-art of analytical LIBS is summarized, providing a contemporary snapshot of LIBS applications, and highlighting new directions in laser-induced breakdown spectroscopy, such as novel approaches, instrumental developments, and advanced use of chemometric tools are discussed.
Abstract: The first part of this two-part review focused on the fundamental and diagnostics aspects of laser-induced plasmas, only touching briefly upon concepts such as sensitivity and detection limits and largely omitting any discussion of the vast panorama of the practical applications of the technique. Clearly a true LIBS community has emerged, which promises to quicken the pace of LIBS developments, applications, and implementations. With this second part, a more applied flavor is taken, and its intended goal is summarizing the current state-of-the-art of analytical LIBS, providing a contemporary snapshot of LIBS applications, and highlighting new directions in laser-induced breakdown spectroscopy, such as novel approaches, instrumental developments, and advanced use of chemometric tools. More specifically, we discuss instrumental and analytical approaches (e.g., double- and multi-pulse LIBS to improve the sensitivity), calibration-free approaches, hyphenated approaches in which techniques such as Raman and fluorescence are coupled with LIBS to increase sensitivity and information power, resonantly enhanced LIBS approaches, signal processing and optimization (e.g., signal-to-noise analysis), and finally applications. An attempt is made to provide an updated view of the role played by LIBS in the various fields, with emphasis on applications considered to be unique. We finally try to assess where LIBS is going as an analytical field, where in our opinion it should go, and what should still be done for consolidating the technique as a mature method of chemical analysis.

1,159 citations

Journal ArticleDOI
TL;DR: One of the advantages of RTILs as compared to their high-temperature molten salt (HTMS) “sister-systems” is that the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules.
Abstract: Until recently, “room-temperature” (<100–150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)–(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of “first-generation” room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the “later generation” RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in “cocktails” of one’s choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost “universal” solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) “sister-systems”.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules.

1,076 citations