Author

# Alfred M. Bruckstein

Other affiliations: Bar-Ilan University, AT&T, Stanford University ...read more

Bio: Alfred M. Bruckstein is an academic researcher from Technion – Israel Institute of Technology. The author has contributed to research in topics: Sparse approximation & Swarm behaviour. The author has an hindex of 58, co-authored 350 publications receiving 23337 citations. Previous affiliations of Alfred M. Bruckstein include Bar-Ilan University & AT&T.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: A novel algorithm for adapting dictionaries in order to achieve sparse signal representations, the K-SVD algorithm, an iterative method that alternates between sparse coding of the examples based on the current dictionary and a process of updating the dictionary atoms to better fit the data.

Abstract: In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and include compression, regularization in inverse problems, feature extraction, and more. Recent activity in this field has concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. Designing dictionaries to better fit the above model can be done by either selecting one from a prespecified set of linear transforms or adapting the dictionary to a set of training signals. Both of these techniques have been considered, but this topic is largely still open. In this paper we propose a novel algorithm for adapting dictionaries in order to achieve sparse signal representations. Given a set of training signals, we seek the dictionary that leads to the best representation for each member in this set, under strict sparsity constraints. We present a new method-the K-SVD algorithm-generalizing the K-means clustering process. K-SVD is an iterative method that alternates between sparse coding of the examples based on the current dictionary and a process of updating the dictionary atoms to better fit the data. The update of the dictionary columns is combined with an update of the sparse representations, thereby accelerating convergence. The K-SVD algorithm is flexible and can work with any pursuit method (e.g., basis pursuit, FOCUSS, or matching pursuit). We analyze this algorithm and demonstrate its results both on synthetic tests and in applications on real image data

8,905 citations

••

TL;DR: The aim of this paper is to introduce a few key notions and applications connected to sparsity, targeting newcomers interested in either the mathematical aspects of this area or its applications.

Abstract: A full-rank matrix ${\bf A}\in \mathbb{R}^{n\times m}$ with $n

2,372 citations

••

22 Apr 2010TL;DR: This paper surveys the various options such training has to offer, up to the most recent contributions and structures of the MOD, the K-SVD, the Generalized PCA and others.

Abstract: Sparse and redundant representation modeling of data assumes an ability to describe signals as linear combinations of a few atoms from a pre-specified dictionary. As such, the choice of the dictionary that sparsifies the signals is crucial for the success of this model. In general, the choice of a proper dictionary can be done using one of two ways: i) building a sparsifying dictionary based on a mathematical model of the data, or ii) learning a dictionary to perform best on a training set. In this paper we describe the evolution of these two paradigms. As manifestations of the first approach, we cover topics such as wavelets, wavelet packets, contourlets, and curvelets, all aiming to exploit 1-D and 2-D mathematical models for constructing effective dictionaries for signals and images. Dictionary learning takes a different route, attaching the dictionary to a set of examples it is supposed to serve. From the seminal work of Field and Olshausen, through the MOD, the K-SVD, the Generalized PCA and others, this paper surveys the various options such training has to offer, up to the most recent contributions and structures.

1,345 citations

••

TL;DR: The main contribution in this paper is the improvement of an important result due to Donoho and Huo (2001) concerning the replacement of the l/sub 0/ optimization problem by a linear programming minimization when searching for the unique sparse representation.

Abstract: An elementary proof of a basic uncertainty principle concerning pairs of representations of R/sup N/ vectors in different orthonormal bases is provided. The result, slightly stronger than stated before, has a direct impact on the uniqueness property of the sparse representation of such vectors using pairs of orthonormal bases as overcomplete dictionaries. The main contribution in this paper is the improvement of an important result due to Donoho and Huo (2001) concerning the replacement of the l/sub 0/ optimization problem by a linear programming (LP) minimization when searching for the unique sparse representation.

693 citations

••

TL;DR: It is shown that if just a small subset of the edge points in the image, selected at random, is used as input for the Hough Transform, the performance is often only slightly impaired, thus the execution time can be considerably shortened.

Abstract: The Hough Transform for straight line detection is considered. It is shown that if just a small subset of the edge points in the image, selected at random, is used as input for the Hough Transform, the performance is often only slightly impaired, thus the execution time can be considerably shortened. The performance of the resulting “Probabilistic Hough Transform” is analysed. The analysis is supported by experimental evidence.

640 citations

##### Cited by

More filters

••

[...]

TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.

Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality.
Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

•

28,685 citations

•

[...]

TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.

Abstract: Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measurements n can be dramatically smaller than the size m. Thus, certain natural classes of images with m pixels need only n=O(m1/4log5/2(m)) nonadaptive nonpixel samples for faithful recovery, as opposed to the usual m pixel samples. More specifically, suppose x has a sparse representation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g., curvelet, Gabor)-so the coefficients belong to an lscrp ball for 0

18,609 citations

•

23 May 2011

TL;DR: It is argued that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas.

Abstract: Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompanying distributed solution methods are either necessary or at least highly desirable. In this review, we argue that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas–Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for l1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, we discuss applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others. We also discuss general distributed optimization, extensions to the nonconvex setting, and efficient implementation, including some details on distributed MPI and Hadoop MapReduce implementations.

17,433 citations

••

TL;DR: In this paper, the authors considered the model problem of reconstructing an object from incomplete frequency samples and showed that with probability at least 1-O(N/sup -M/), f can be reconstructed exactly as the solution to the lscr/sub 1/ minimization problem.

Abstract: This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discrete-time signal f/spl isin/C/sup N/ and a randomly chosen set of frequencies /spl Omega/. Is it possible to reconstruct f from the partial knowledge of its Fourier coefficients on the set /spl Omega/? A typical result of this paper is as follows. Suppose that f is a superposition of |T| spikes f(t)=/spl sigma//sub /spl tau//spl isin/T/f(/spl tau/)/spl delta/(t-/spl tau/) obeying |T|/spl les/C/sub M//spl middot/(log N)/sup -1/ /spl middot/ |/spl Omega/| for some constant C/sub M/>0. We do not know the locations of the spikes nor their amplitudes. Then with probability at least 1-O(N/sup -M/), f can be reconstructed exactly as the solution to the /spl lscr//sub 1/ minimization problem. In short, exact recovery may be obtained by solving a convex optimization problem. We give numerical values for C/sub M/ which depend on the desired probability of success. Our result may be interpreted as a novel kind of nonlinear sampling theorem. In effect, it says that any signal made out of |T| spikes may be recovered by convex programming from almost every set of frequencies of size O(|T|/spl middot/logN). Moreover, this is nearly optimal in the sense that any method succeeding with probability 1-O(N/sup -M/) would in general require a number of frequency samples at least proportional to |T|/spl middot/logN. The methodology extends to a variety of other situations and higher dimensions. For example, we show how one can reconstruct a piecewise constant (one- or two-dimensional) object from incomplete frequency samples - provided that the number of jumps (discontinuities) obeys the condition above - by minimizing other convex functionals such as the total variation of f.

14,587 citations