scispace - formally typeset
Search or ask a question
Author

Alfredo Cappariello

Other affiliations: Boston Children's Hospital
Bio: Alfredo Cappariello is an academic researcher from University of L'Aquila. The author has contributed to research in topics: Osteoclast & Osteoblast. The author has an hindex of 15, co-authored 28 publications receiving 1027 citations. Previous affiliations of Alfredo Cappariello include Boston Children's Hospital.

Papers
More filters
Journal ArticleDOI
01 Jan 2008-Bone
TL;DR: It is demonstrated that osteoblasts may also contribute to the pathogenesis of the disease, either because they are affected by intrinsic defects, or because their activity may be enhanced by deregulated osteoclasts abundantly present in most forms, thus suggesting additional genetic/environmental determinants affecting penetrance.

253 citations

Journal ArticleDOI
TL;DR: Osteoclasts are important regulators of osteoblast activity and angiogenesis, both by releasing factors stored in the bone matrix, and secreting "clastokines" that regulate the activity of neighboring cells.

178 citations

Journal ArticleDOI
TL;DR: Findings provide a rationale for novel therapies targeting pH handling mechanisms in osteoclasts and their microenvironment.
Abstract: Background: Osteopetrosis, a genetic disease characterised by osteoclast failure, is classified into three forms: infantile malignant autosomal recessive osteopetrosis (ARO), intermediate autosomal recessive osteopetrosis (IRO), and autosomal dominant osteopetrosis (ADO). Methods: We studied 49 patients, 21 with ARO, one with IRO, and 27 with type II ADO (ADO II). Results: Most ARO patients bore known or novel (one case) ATP6i (TCIRG1) gene mutations. Six ADO II patients had no mutations in ClCN7, the only so far recognised gene implicated, suggesting involvement of yet unknown genes. Identical ClCN7 mutations produced differing phenotypes with variable degrees of severity. In ADO II, serum tartrate resistant acid phosphatase was always elevated. Bone alkaline phosphatase (BALP) was generally low, but osteocalcin was high, suggesting perturbed osteoblast differentiation or function. In contrast, BALP was high in ARO patients. Elevated osteoclast surface/bone surface was noted in biopsies from most ARO patients. Cases with high osteoclasts also showed increased osteoblast surface/bone surface. ARO osteoclasts were morphologically normal, with unaltered formation rates, intracellular pH handling, and response to acidification. Their resorption activity was greatly reduced, but not abolished. In control osteoclasts, all resorption activity was abolished by combined inhibition of proton pumping and sodium/proton antiport. Conclusions: These findings provide a rationale for novel therapies targeting pH handling mechanisms in osteoclasts and their microenvironment.

173 citations

Journal ArticleDOI
TL;DR: It is found that the IGFBP5 produced by osteoblasts stimulates osteoclastogenesis and bone resorption, acting as an osteoblast-osteoclast coupling factor, and it is concluded that this pathway is relevant for bone metabolism, both in physiological and in pathological conditions.
Abstract: Interleukin-6 (IL-6) and c-Src impair osteoblast maturation in vitro and in vivo. Given the similar effects of these factors, they are likely to establish a functional loop to maintain osteoblasts in a less mature status. Here we describe a pathway whereby c-Src stimulates IL-6 expression through the STAT3 factor, which, in response to IL-6 induces insulin-like growth factor 5 (IGFBP5), a c-Src activating factor that amplifies this loop only in immature osteoblasts. In contrast, in mature osteoblasts, IGFBP5 is enhanced by Runx2, but is no longer able to stimulate c-Src activation, as this tyrosine kinase at this stage is downregulated. We find that the IGFBP5 produced by osteoblasts stimulates osteoclastogenesis and bone resorption, acting as an osteoblast-osteoclast coupling factor. Finally, we demonstrate that the integrated actions of c-Src, IL-6 and IGFBP5 also have a role in vivo. We conclude that this pathway is relevant for bone metabolism, both in physiological and in pathological conditions.

94 citations

Journal ArticleDOI
TL;DR: It is concluded that osteoblast EVs are involved in intercellular communication between bone cells, contribute to the Rankl pro‐osteoclastic effect, and shuttle anti-osteoclast drugs, representing a potential means of targeted therapeutic delivery.
Abstract: Extracellular vesicles (EVs) are newly appreciated regulators of tissue homeostasis and a means of intercellular communication. Reports have investigated the role of EVs and their cargoes in cellular regulation and have tried to fine-tune their biotechnological use, but to date very little is known on their function in bone biology. To investigate the relevance of EV-mediated communication between bone cells, we isolated EVs from primary mouse osteoblasts and assessed membrane integrity, size, and structure by transmission electron microscopy (TEM) and fluorescence-activated cell sorting (FACS). EVs actively shuttled loaded fluorochromes to osteoblasts, monocytes, and endothelial cells. Moreover, osteoblast EVs contained mRNAs shared with donor cells. Osteoblasts are known to regulate osteoclastogenesis, osteoclast survival, and osteoclast function by the pro-osteoclastic cytokine, receptor activator of nuclear factor κ-B ligand (Rankl). Osteoblast EVs were enriched in Rankl, which increased after PTH treatment. These EVs were biologically active, supporting osteoclast survival. EVs isolated from rankl-/- osteoblasts lost this pro-osteoclastic function, indicating its Rankl-dependence. They integrated ex vivo into murine calvariae, and EV-shuttled fluorochromes were quickly taken up by the bone upon in vivo EV systemic administration. Rankl-/- mice lack the osteoclast lineage and are negative for its specific marker tartrate-resistant acid phosphatase (TRAcP). Treatment of rankl-/- mice with wild-type osteoblast EVs induced the appearance of TRAcP-positive cells in an EV density-dependent manner. Finally, osteoblast EVs internalized and shuttled anti-osteoclast drugs (zoledronate and dasatinib), inhibiting osteoclast activity in vitro and in vivo. We conclude that osteoblast EVs are involved in intercellular communication between bone cells, contribute to the Rankl pro-osteoclastic effect, and shuttle anti-osteoclast drugs, representing a potential means of targeted therapeutic delivery. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.

89 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The current understanding of the role of the RANKL/RANK/OPG system in bone modeling and remodeling is reviewed to show that the relative concentration of RankL and OPG in bone is a major determinant of bone mass and strength.

1,414 citations

Journal ArticleDOI
TL;DR: The purpose of this review is to describe the molecular roles of age-related physiological functional declines and the accompanying chronic diseases associated with aging to provide insights into potential interventions that may affect the aging process and reduce age- related diseases, thereby promoting healthy longevity.

1,029 citations

Journal ArticleDOI
TL;DR: Molecular communication between osteoclasts and osteoblasts at distinct phases of bone remodeling are described and bidirectional signaling generated by interaction between ephrinB2 on osteoclast and EphB4 on osteoblast precursors facilitates the transition.

668 citations

01 Jan 2009
TL;DR: In this article, a review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.
Abstract: MicroRNAs (miRNAs) are endogenous ∼23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.

646 citations

Journal ArticleDOI
TL;DR: Pharmacotherapies that increase PDGF-BB secretion from preosteoclasts offer a new therapeutic target for treating osteoporosis by promoting angiogenesis and thus bone formation.
Abstract: Osteogenesis during bone modeling and remodeling is coupled with angiogenesis. A recent study showed that a specific vessel subtype, strongly positive for CD31 and endomucin (CD31(hi)Emcn(hi)), couples angiogenesis and osteogenesis. Here, we found that platelet-derived growth factor-BB (PDGF-BB) secreted by preosteoclasts induces CD31(hi)Emcn(hi) vessel formation during bone modeling and remodeling. Mice with depletion of PDGF-BB in the tartrate-resistant acid phosphatase-positive cell lineage show significantly lower trabecular and cortical bone mass, serum and bone marrow PDGF-BB concentrations, and fewer CD31(hi)Emcn(hi) vessels compared to wild-type mice. In the ovariectomy (OVX)-induced osteoporotic mouse model, serum and bone marrow levels of PDGF-BB and numbers of CD31(hi)Emcn(hi) vessels are significantly lower compared to sham-operated controls. Treatment with exogenous PDGF-BB or inhibition of cathepsin K to increase the number of preosteoclasts, and thus the endogenous levels of PDGF-BB, increases CD31(hi)Emcn(hi) vessel number and stimulates bone formation in OVX mice. Thus, pharmacotherapies that increase PDGF-BB secretion from preosteoclasts offer a new therapeutic target for treating osteoporosis by promoting angiogenesis and thus bone formation.

564 citations