scispace - formally typeset
Search or ask a question
Author

Ali A. Shabaka

Bio: Ali A. Shabaka is an academic researcher. The author has contributed to research in topics: Cadmium sulfide & Fourier transform infrared spectroscopy. The author has an hindex of 12, co-authored 17 publications receiving 567 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The present process is an excellent candidate for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive.

166 citations

Journal ArticleDOI
TL;DR: Pulsed laser ablation in a liquid medium is a promising technique as compared to the other synthetic methods to synthesize different materials in nanoscale form and the particle size and distribution of materials can be adjusted.

75 citations

Journal ArticleDOI
TL;DR: It was found that PVA/PVP-stabilized silver nanocomposite film revealed the presence of well-dispersed and spherical silver nanoparticles with an average diameter of 30 nm, while the particle sizes were reduced as the PVP percentage increased.

71 citations

Journal ArticleDOI
TL;DR: In this article, a pulsed laser-assisted in liquid environment method has been developed successfully to synthesize size-tunable (5-12nm) and different shapes (sphere, rod, rope) of nano II-VI semiconductor (cadmium sulfide).
Abstract: A pulsed laser-assisted in liquid environment method has been developed successfully to synthesize size-tunable (5–12 nm) and different shapes (sphere, rod, rope) of nano II–VI semiconductor (cadmium sulfide). This method can be carried out in two ways; the first one is the top-down technique, which has been discussed in publications in the last few decades, and the other one is the bottom-up technique, which appears for the first time in this paper. X-ray diffraction, ultraviolet-visible spectroscopy, and transmission electron microscopy confirm that the nanoparticles are crystalline. The methods lead to the production of nanomaterials, which are important for photonics and biosensing applications. Both synthesized methods can be applied in all materials because of their ability to ablate almost all kinds of materials due to the ultrahigh energy density and control over the growth process by manipulating the process parameters such as intensity, wavelength, and so on.

66 citations

Journal ArticleDOI
02 Oct 2013-PLOS ONE
TL;DR: The concentration of GNR achieved within tumors microregions after I.V.T. administration was sufficient to elicit tumoral growth arrest when coupled with laser-aided photoplasmonic treatment, and tissue distribution of PEGylated GNRs was similar to intratumoral administration.
Abstract: Gold nanorods (GNR) within tumor microregions are characterized by their ability to absorb near IR light and emit heat in what is called photoplasmonic effect. Yet, the efficacy of nanoparticles is limited due to intratumoral tissue distribution reasons. In addition, distribution of GNRs to normal tissue might result in non specific toxicity. In the current study, we are assessing the intratumoral and tissue distribution of PEGylated GNRs on the top of its antitumor characteristics when given intravenously or intratumoral to solid tumor bearing mice and coupled with laser photoplasmonic sessions. PEGylated GNRs with a longitudinal size of less than 100 nm were prepared with aspect ratio of 4.6 showing strong surface plasmon absorption at wavelength 800 nm. Pharmacokinetics of GNR after single I.V. administration (0.1 mg/kg) showed very short systemic circulating time (less than 3 h). On the other hand, tissue distribution of I.V. GNR (0.1 mg/kg) to normal animals showed preferential deposition in spleen tissue. Repeated administration of I.V. GNR resulted in preferential accumulation in both liver and spleen tissues. In addition, I.V. administration of GNR to Ehrlich carcinoma tumor bearing mice resulted in similar tissue distribution; tumor accumulation and anti-tumor effect compared to intratumoral administration. In conclusion, the concentration of GNR achieved within tumors microregions after I.V. administration was comparable to I.T. administration and sufficient to elicit tumoral growth arrest when coupled with laser-aided photoplasmonic treatment.

50 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the surface of inorganic nanoparticles is modified to improve the interfacial interactions between the inorganic particles and the polymer matrix, which improves the properties of polymeric composites.

1,709 citations

Journal ArticleDOI
TL;DR: This review summarized the fundamental processes and mechanisms of “green” synthesis approaches, especially for metal and metal oxide nanoparticles using natural extracts and explored the role of biological components, essential phytochemicals (e.g., flavonoids, alkaloids, terpenoids, amides, and aldehydes) as reducing agents and solvent systems.
Abstract: In materials science, “green” synthesis has gained extensive attention as a reliable, sustainable, and eco-friendly protocol for synthesizing a wide range of materials/nanomaterials including metal/metal oxides nanomaterials, hybrid materials, and bioinspired materials. As such, green synthesis is regarded as an important tool to reduce the destructive effects associated with the traditional methods of synthesis for nanoparticles commonly utilized in laboratory and industry. In this review, we summarized the fundamental processes and mechanisms of “green” synthesis approaches, especially for metal and metal oxide [e.g., gold (Au), silver (Ag), copper oxide (CuO), and zinc oxide (ZnO)] nanoparticles using natural extracts. Importantly, we explored the role of biological components, essential phytochemicals (e.g., flavonoids, alkaloids, terpenoids, amides, and aldehydes) as reducing agents and solvent systems. The stability/toxicity of nanoparticles and the associated surface engineering techniques for achieving biocompatibility are also discussed. Finally, we covered applications of such synthesized products to environmental remediation in terms of antimicrobial activity, catalytic activity, removal of pollutants dyes, and heavy metal ion sensing.

1,175 citations

Journal ArticleDOI
TL;DR: This review provides a detailed analysis of the various factors affecting the morphology, size, and yield of metal nanoparticles.
Abstract: While metal nanoparticles are being increasingly used in many sectors of the economy, there is growing interest in the biological and environmental safety of their production. The main methods for nanoparticle production are chemical and physical approaches that are often costly and potentially harmful to the environment. The present review is devoted to the possibility of metal nanoparticle synthesis using plant extracts. This approach has been actively pursued in recent years as an alternative, efficient, inexpensive, and environmentally safe method for producing nanoparticles with specified properties. This review provides a detailed analysis of the various factors affecting the morphology, size, and yield of metal nanoparticles. The main focus is on the role of the natural plant biomolecules involved in the bioreduction of metal salts during the nanoparticle synthesis. Examples of effective use of exogenous biomatrices (peptides, proteins, and viral particles) to obtain nanoparticles in plant extracts are discussed.

1,152 citations

Journal ArticleDOI
TL;DR: Unscreened surface charge of LSPC-synthesized colloids is the key to achieving colloidal stability and high affinity to biomolecules as well as support materials, thereby enabling the fabrication of bioconjugates and heterogeneous catalysts.
Abstract: Driven by functionality and purity demand for applications of inorganic nanoparticle colloids in optics, biology, and energy, their surface chemistry has become a topic of intensive research interest. Consequently, ligand-free colloids are ideal reference materials for evaluating the effects of surface adsorbates from the initial state for application-oriented nanointegration purposes. After two decades of development, laser synthesis and processing of colloids (LSPC) has emerged as a convenient and scalable technique for the synthesis of ligand-free nanomaterials in sealed environments. In addition to the high-purity surface of LSPC-generated nanoparticles, other strengths of LSPC include its high throughput, convenience for preparing alloys or series of doped nanomaterials, and its continuous operation mode, suitable for downstream processing. Unscreened surface charge of LSPC-synthesized colloids is the key to achieving colloidal stability and high affinity to biomolecules as well as support materials,...

892 citations

Journal ArticleDOI
TL;DR: This Review provides a comprehensive analysis of carbon nanotube transparent conductive films covering detailed fabrication methods including patterning of the films, chemical doping effects, and hybridization with other materials.
Abstract: Transparent conducting films (TCFs) are a critical component in many personal electronic devices. Transparent and conductive doped metal oxides are widely used in industry due to their excellent optoelectronic properties as well as the mature understanding of their production and handling. However, they are not compatible with future flexible electronics developments where large-scale production will likely involve roll-to-roll manufacturing. Recent studies have shown that carbon nanotubes provide unique chemical, physical, and optoelectronic properties, making them an important alternative to doped metal oxides. This Review provides a comprehensive analysis of carbon nanotube transparent conductive films covering detailed fabrication methods including patterning of the films, chemical doping effects, and hybridization with other materials. There is a focus on optoelectronic properties of the films and potential in applications such as photovoltaics, touch panels, liquid crystal displays, and organic light-emitting diodes in conjunction with a critical analysis of both the merits and shortcomings of carbon nanotube transparent conductive films.

359 citations