scispace - formally typeset
Search or ask a question
Author

Ali Alavi

Bio: Ali Alavi is an academic researcher from Max Planck Society. The author has contributed to research in topics: Quantum Monte Carlo & Full configuration interaction. The author has an hindex of 56, co-authored 184 publications receiving 10661 citations. Previous affiliations of Ali Alavi include Humboldt University of Berlin & University of Cambridge.


Papers
More filters
Journal ArticleDOI
TL;DR: A new quantum Monte Carlo method for the simulation of correlated many-electron systems in full configuration-interaction (Slater determinant) spaces is developed, designed to simulate the underlying imaginary-time Schrödinger equation of the interacting Hamiltonian.
Abstract: We have developed a new quantum Monte Carlo method for the simulation of correlated many-electron systems in full configuration-interaction (Slater determinant) spaces. The new method is a population dynamics of a set of walkers, and is designed to simulate the underlying imaginary-time Schrodinger equation of the interacting Hamiltonian. The walkers (which carry a positive or negative sign) inhabit Slater determinant space, and evolve according to a simple set of rules which include spawning, death and annihilation processes. We show that this method is capable of converging onto the full configuration-interaction (FCI) energy and wave function of the problem, without any a priori information regarding the nodal structure of the wave function being provided. Walker annihilation is shown to play a key role. The pattern of walker growth exhibits a characteristic plateau once a critical (system-dependent) number of walkers has been reached. At this point, the correlation energy can be measured using two independent methods—a projection formula and a energy shift; agreement between these provides a strong measure of confidence in the accuracy of the computed correlation energies. We have verified the method by performing calculations on systems for which FCI calculations already exist. In addition, we report on a number of new systems, including CO, O2, CH4, and NaH—with FCI spaces ranging from 109 to 1014, whose FCI energies we compute using modest computational resources.

704 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied CO oxidation on Pt(111) with ab initio density functional theory and identified the low energy pathway and transition state for the reaction and the key event is the breaking of an O-metal bond prior to the formation of a chemisorbed ${\mathrm{CO}}_{2}$ molecule.
Abstract: CO oxidation on Pt(111) is studied with ab initio density functional theory The low energy pathway and transition state for the reaction are identified The key event is the breaking of an O-metal bond prior to the formation of a chemisorbed ${\mathrm{CO}}_{2}$ molecule The pathway can be rationalized in terms of competition of the O and C atoms for bonding with the underlying surface, and the predominant energetic barrier is the strength of the O-metal bond

659 citations

Journal ArticleDOI
TL;DR: The OpenMolcas environment is described and features unique to simulations of spectroscopic and magnetic phenomena such as the exact semiclassical description of the interaction between light and matter, various X-ray processes, magnetic circular dichroism and properties are described.
Abstract: In this Article we describe the OpenMolcas environment and invite the computational chemistry community to collaborate. The open-source project already includes a large number of new developments realized during the transition from the commercial MOLCAS product to the open-source platform. The paper initially describes the technical details of the new software development platform. This is followed by brief presentations of many new methods, implementations, and features of the OpenMolcas program suite. These developments include novel wave function methods such as stochastic complete active space self-consistent field, density matrix renormalization group (DMRG) methods, and hybrid multiconfigurational wave function and density functional theory models. Some of these implementations include an array of additional options and functionalities. The paper proceeds and describes developments related to explorations of potential energy surfaces. Here we present methods for the optimization of conical intersections, the simulation of adiabatic and nonadiabatic molecular dynamics, and interfaces to tools for semiclassical and quantum mechanical nuclear dynamics. Furthermore, the Article describes features unique to simulations of spectroscopic and magnetic phenomena such as the exact semiclassical description of the interaction between light and matter, various X-ray processes, magnetic circular dichroism, and properties. Finally, the paper describes a number of built-in and add-on features to support the OpenMolcas platform with postcalculation analysis and visualization, a multiscale simulation option using frozen-density embedding theory, and new electronic and muonic basis sets.

559 citations

Journal ArticleDOI
17 Jan 2013-Nature
TL;DR: The application of an exact technique, full configuration interaction quantum Monte Carlo to a variety of real solids, providing reference many-electron energies that are used to rigorously benchmark the standard hierarchy of quantum-chemical techniques, up to the ‘gold standard’ coupled-cluster ansatz.
Abstract: The properties of all materials arise largely from the quantum mechanics of their constituent electrons under the influence of the electric field of the nuclei. The solution of the underlying many-electron Schrodinger equation is a ‘non-polynomial hard’ problem, owing to the complex interplay of kinetic energy, electron–electron repulsion and the Pauli exclusion principle. The dominant computational method for describing such systems has been density functional theory. Quantum-chemical methods—based on an explicit ansatz for the many-electron wavefunctions and, hence, potentially more accurate—have not been fully explored in the solid state owing to their computational complexity, which ranges from strongly exponential to high-order polynomial in system size. Here we report the application of an exact technique, full configuration interaction quantum Monte Carlo to a variety of real solids, providing reference many-electron energies that are used to rigorously benchmark the standard hierarchy of quantum-chemical techniques, up to the ‘gold standard’ coupled-cluster ansatz, including single, double and perturbative triple particle–hole excitation operators. We show the errors in cohesive energies predicted by this method to be small, indicating the potential of this computationally polynomial scaling technique to tackle current solid-state problems. Recent developments that reduce the computational cost and scaling of wavefunction-based quantum-chemical techniques open the way to the successful application of such techniques to a variety of real-world solids. Computational descriptions of solid-state materials are currently dominated by methods based on density functional theory. An attractive and potentially more accurate approach would be to adopt the wavefunction-based methods of quantum chemistry, although these have not received as much attention because of the computational complexities involved. Now George Booth and colleagues show how recent developments that serve to reduce the computational cost and scaling of such quantum-chemical techniques open the way to their successful application to a variety of real-world solids.

537 citations

Journal ArticleDOI
TL;DR: It is shown that linear relationships exist between dissociation activation energies and enthalpy changes and merely from knowledge of adsorption energies the barriers to catalytic elementary reaction steps can be estimated.
Abstract: The activation energy to reaction is a key quantity that controls catalytic activity. Having used ab inito calculations to determine an extensive and broad ranging set of activation energies and enthalpy changes for surface-catalyzed reactions, we show that linear relationships exist between dissociation activation energies and enthalpy changes. Known in the literature as empirical Bronsted−Evans−Polanyi (BEP) relationships, we identify and discuss the physical origin of their presence in heterogeneous catalysis. The key implication is that merely from knowledge of adsorption energies the barriers to catalytic elementary reaction steps can be estimated.

507 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: Density functional theory calculations show that the high catalytic activity correlates with the partially vacant 5d orbitals of the positively charged, high-valent Pt atoms, which help to reduce both the CO adsorption energy and the activation barriers for CO oxidation.
Abstract: Platinum-based heterogeneous catalysts are critical to many important commercial chemical processes, but their efficiency is extremely low on a per metal atom basis, because only the surface active-site atoms are used. Catalysts with single-atom dispersions are thus highly desirable to maximize atom efficiency, but making them is challenging. Here we report the synthesis of a single-atom catalyst that consists of only isolated single Pt atoms anchored to the surfaces of iron oxide nanocrystallites. This single-atom catalyst has extremely high atom efficiency and shows excellent stability and high activity for both CO oxidation and preferential oxidation of CO in H-2. Density functional theory calculations show that the high catalytic activity correlates with the partially vacant 5d orbitals of the positively charged, high-valent Pt atoms, which help to reduce both the CO adsorption energy and the activation barriers for CO oxidation.

4,446 citations

Journal ArticleDOI
TL;DR: The first steps towards using computational methods to design new catalysts are reviewed and how, in the future, such methods may be used to engineer the electronic structure of the active surface by changing its composition and structure are discussed.
Abstract: Over the past decade the theoretical description of surface reactions has undergone a radical development. Advances in density functional theory mean it is now possible to describe catalytic reactions at surfaces with the detail and accuracy required for computational results to compare favourably with experiments. Theoretical methods can be used to describe surface chemical reactions in detail and to understand variations in catalytic activity from one catalyst to another. Here, we review the first steps towards using computational methods to design new catalysts. Examples include screening for catalysts with increased activity and catalysts with improved selectivity. We discuss how, in the future, such methods may be used to engineer the electronic structure of the active surface by changing its composition and structure.

3,023 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations

Book ChapterDOI
TL;DR: The application of density functional theory to calculate adsorption properties, reaction pathways, and activation energies for surface chemical reactions is reviewed in this article, with particular emphasis on developing concepts that can be used to understand and predict variations in reactivity from one transition metal to the next or the effects of alloying, surface structure, and adsorbate-adsorbate interactions on the reactivity.
Abstract: The application of density functional theory to calculate adsorption properties, reaction pathways, and activation energies for surface chemical reactions is reviewed. Particular emphasis is placed on developing concepts that can be used to understand and predict variations in reactivity from one transition metal to the next or the effects of alloying, surface structure, and adsorbate-adsorbate interactions on the reactivity. Most examples discussed are concerned with the catalytic properties of transition metal surfaces, but it is shown that the calculational approach and the concepts developed to understand trends in reactivity for metals can also be used for sulfide and oxide catalysts.

2,131 citations