scispace - formally typeset
Search or ask a question
Author

Ali Aldrees

Bio: Ali Aldrees is an academic researcher from Salman bin Abdulaziz University. The author has contributed to research in topics: Environmental science & Mean squared error. The author has an hindex of 2, co-authored 7 publications receiving 14 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A framework for tuning the hyper-parameters of feed forward neural network and gene expression programming with particle swarm optimization with PSO is proposed, which demonstrated that the implementation of artificial intelligence models with optimization routine can lead to optimized models for accurate prediction of water quality.

29 citations

Journal ArticleDOI
TL;DR: The outcome of the present study reveals that the ANFIS modeling, aided with data pre-processing and input optimization, is a suitable technique for simulating the quality of surface water.
Abstract: Modeling surface water quality using soft computing techniques is essential for the effective management of scarce water resources and environmental protection. The development of accurate predictive models with significant input parameters and inconsistent datasets is still a challenge. Therefore, further research is needed to improve the performance of the predictive models. This study presents a methodology for dataset pre-processing and input optimization for reducing the modeling complexity. The objective of this study was achieved by employing a two-sided detection approach for outlier removal and an exhaustive search method for selecting essential modeling inputs. Thereafter, the adaptive neuro-fuzzy inference system (ANFIS) was applied for modeling electrical conductivity (EC) and total dissolved solids (TDS) in the upper Indus River. A larger dataset of a 30-year historical period, measured monthly, was utilized in the modeling process. The prediction capacity of the developed models was estimated by statistical assessment indicators. Moreover, the 10-fold cross-validation method was carried out to address the modeling overfitting issue. The results of the input optimization indicate that Ca2+, Na+, and Cl− are the most relevant inputs to be used for EC. Meanwhile, Mg2+, HCO3−, and SO42− were selected to model TDS levels. The optimum ANFIS models for the EC and TDS data showed R values of 0.91 and 0.92, and the root mean squared error (RMSE) results of 30.6 µS/cm and 16.7 ppm, respectively. The optimum ANFIS structure comprises a hybrid training algorithm with 27 fuzzy rules of triangular fuzzy membership functions for EC and a Gaussian curve for TDS modeling, respectively. Evidently, the outcome of the present study reveals that the ANFIS modeling, aided with data pre-processing and input optimization, is a suitable technique for simulating the quality of surface water. It could be an effective approach in minimizing modeling complexity and elaborating proper management and mitigation measures.

26 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the predictive performance of gene expression programming (GEP), artificial neural network (ANN) and linear regression model (LRM) for modeling monthly total dissolved solids (TDS) and specific conductivity (EC) in the upper Indus River at two outlet stations.
Abstract: Water pollution is an increasing global issue that societies are facing and is threating human health, ecosystem functions and agriculture production. The distinguished features of artificial intelligence (AI) based modeling can deliver a deep insight pertaining to rising water quality concerns. The current study investigates the predictive performance of gene expression programming (GEP), artificial neural network (ANN) and linear regression model (LRM) for modeling monthly total dissolved solids (TDS) and specific conductivity (EC) in the upper Indus River at two outlet stations. In total, 30 years of historical water quality data, comprising 360 TDS and EC monthly records, were used for models training and testing. Based on a significant correlation, the TDS and EC modeling were correlated with seven input parameters. Results were evaluated using various performance measure indicators, error assessment and external criteria. The simulated outcome of the models indicated a strong association with actual data where the correlation coefficient above 0.9 was observed for both TDS and EC. Both the GEP and ANN models remained the reliable techniques in predicting TDS and EC. The formulated GEP mathematical equations depict its novelty as compared to ANN and LRM. The results of sensitivity analysis indicated the increasing trend of input variables affecting TDS as HCO3 ?? (22.33%) > Cl?? (21.66%) > Mg2+ (16.98%) > Na+ (14.55%) > Ca2+ (12.92%) > SO4 2?? (11.55%) > pH (0%), while, in the case of EC, it followed the trend as HCO3 ?? (42.36%) > SO4 2??(25.63%) > Ca2+ (13.59%) > Cl?? (12.8%) > Na+ (5.01%) > pH (0.61%) > Mg2+ (0%). The parametric analysis revealed that models have incorporated the effect of all the input parameters in the modeling process. The external assessment criteria confirmed the generalized outcome and robustness of the proposed approaches. Conclusively, the outcomes of this study demonstrated that the formulation of AI based models are cost effective and helpful for river water quality assessment, management and policy making.

19 citations

Journal ArticleDOI
TL;DR: In this paper , a comparison of individual supervised ML models, such as gene expression programming (GEP) and artificial neural network (ANN), with that of an ensemble learning model, i.e., random forest (RF), for predicting river water salinity in terms of electrical conductivity (EC) and dissolved solids (TDS) in the Upper Indus River basin, Pakistan.
Abstract: The prediction accuracies of machine learning (ML) models may not only be dependent on the input parameters and training dataset, but also on whether an ensemble or individual learning model is selected. The present study is based on the comparison of individual supervised ML models, such as gene expression programming (GEP) and artificial neural network (ANN), with that of an ensemble learning model, i.e., random forest (RF), for predicting river water salinity in terms of electrical conductivity (EC) and dissolved solids (TDS) in the Upper Indus River basin, Pakistan. The projected models were trained and tested by using a dataset of seven input parameters chosen on the basis of significant correlation. Optimization of the ensemble RF model was achieved by producing 20 sub-models in order to choose the accurate one. The goodness-of-fit of the models was assessed through well-known statistical indicators, such as the coefficient of determination (R2), mean absolute error (MAE), root mean squared error (RMSE), and Nash–Sutcliffe efficiency (NSE). The results demonstrated a strong association between inputs and modeling outputs, where R2 value was found to be 0.96, 0.98, and 0.92 for the GEP, RF, and ANN models, respectively. The comparative performance of the proposed methods showed the relative superiority of the RF compared to GEP and ANN. Among the 20 RF sub-models, the most accurate model yielded the R2 equal to 0.941 and 0.938, with 70 and 160 numbers of corresponding estimators. The lowest RMSE values of 1.37 and 3.1 were yielded by the ensemble RF model on training and testing data, respectively. The results of the sensitivity analysis demonstrated that HCO3− is the most effective variable followed by Cl− and SO42− for both the EC and TDS. The assessment of the models on external criteria ensured the generalized results of all the aforementioned techniques. Conclusively, the outcome of the present research indicated that the RF model with selected key parameters could be prioritized for water quality assessment and management.

16 citations

Journal ArticleDOI
17 Mar 2022-Water
TL;DR: In this article , the authors presented the development of a multi-expression programming (MEP) based predictive model for water quality parameters, i.e., electrical conductivity (EC) and total dissolved solids (TDS) in the upper Indus River at two different outlet locations.
Abstract: Water contamination is indeed a worldwide problem that threatens public health, environmental protection, and agricultural productivity. The distinctive attributes of machine learning (ML)-based modelling can provide in-depth understanding into increasing water quality challenges. This study presents the development of a multi-expression programming (MEP) based predictive model for water quality parameters, i.e., electrical conductivity (EC) and total dissolved solids (TDS) in the upper Indus River at two different outlet locations using 360 readings collected on a monthly basis. The optimized MEP models were assessed using different statistical measurements i.e., coefficient-of-determination (R2), root-mean-square error (RMSE), mean-absolute error (MAE), root-mean-square-logarithmic error (RMSLE) and mean-absolute-percent error (MAPE). The results show that the R2 in the testing phase (subjected to unseen data) for EC-MEP and TDS-MEP models is above 0.90, i.e., 0.9674 and 0.9725, respectively, reflecting the higher accuracy and generalized performance. Also, the error measures are quite lower. In accordance with MAPE statistics, both the MEP models shows an “excellent” performance in all three stages. In comparison with traditional non-linear regression models (NLRMs), the developed machine learning models have good generalization capabilities. The sensitivity analysis of the developed MEP models with regard to the significance of each input on the forecasted water quality parameters suggests that Cl and HCO3 have substantial impacts on the predictions of MEP models (EC and TDS), with a sensitiveness index above 0.90, although the influence of the Na is the less prominent. The results of this research suggest that the development of intelligence models for EC and TDS are cost effective and viable for the evaluation and monitoring of the quality of river water.

13 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper , various machine learning classifiers and their stacking ensemble models were used to classify the WQ data via the Water Quality Index (WQI), and the results revealed that the CATBoost model offered the most accurate classifier with a percentage of 94.51.
Abstract: Monitoring water quality is essential for protecting human health and the environment and controlling water quality. Artificial Intelligence (AI) offers significant opportunities to help improve the classification and prediction of water quality (WQ). In this study, various AI algorithms are assessed to handle WQ data collected over an extended period and develop a dependable approach for forecasting water quality as accurately as possible. Specifically, various machine learning classifiers and their stacking ensemble models were used to classify the WQ data via the Water Quality Index (WQI). The studied classifiers included Support Vector Machine (SVM), Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), CATBoost, XGBoost, and Multilayer Perceptron (MLP). The dataset used in the study included 1679 samples and their meta-data collected over nine years. In addition, precision-recall curves and Receiver Operating Characteristic curves (ROC) were used to assess the performance of the various classifiers. The findings revealed that the CATBoost model offered the most accurate classifier with a percentage of 94.51. Moreover, after applying stacking ensemble models with all classifiers, accuracy reached 100% in various Meta-classifiers. Furthermore, the CATBoost achieved the highest accuracy as a primary gradient boosting algorithm and a meta classifier. Therefore, the boosting algorithm is proposed as a reliable approach for the WQ classification. The analysis presented in this article presents a framework that can support the efforts of researchers working toward water quality improvement using artificial intelligence.

44 citations

Journal ArticleDOI
02 Oct 2021-Polymers
TL;DR: In this paper, the use of the artificial neural network (ANN), boosting, and AdaBoost ML approaches, based on the python coding to predict the compressive strength (CS) of high calcium fly-ash-based geopolymer concrete (GPC) is presented.
Abstract: The innovation of geopolymer concrete (GPC) plays a vital role not only in reducing the environmental threat but also as an exceptional material for sustainable development. The application of supervised machine learning (ML) algorithms to forecast the mechanical properties of concrete also has a significant role in developing the innovative environment in the field of civil engineering. This study was based on the use of the artificial neural network (ANN), boosting, and AdaBoost ML approaches, based on the python coding to predict the compressive strength (CS) of high calcium fly-ash-based GPC. The performance comparison of both the employed techniques in terms of prediction reveals that the ensemble ML approaches, AdaBoost, and boosting were more effective than the individual ML technique (ANN). The boosting indicates the highest value of R2 equals 0.96, and AdaBoost gives 0.93, while the ANN model was less accurate, indicating the coefficient of determination value equals 0.87. The lesser values of the errors, MAE, MSE, and RMSE of the boosting technique give 1.69 MPa, 4.16 MPa, and 2.04 MPa, respectively, indicating the high accuracy of the boosting algorithm. However, the statistical check of the errors (MAE, MSE, RMSE) and k-fold cross-validation method confirms the high precision of the boosting technique. In addition, the sensitivity analysis was also introduced to evaluate the contribution level of the input parameters towards the prediction of CS of GPC. The better accuracy can be achieved by incorporating other ensemble ML techniques such as AdaBoost, bagging, and gradient boosting.

35 citations

Journal ArticleDOI
TL;DR: In this article , the authors investigated water quality indices (WQIs), trophic status indices (TSIs), and heavy metal indices (HMIs) for assessing surface water quality.

33 citations

Journal ArticleDOI
TL;DR: A framework for tuning the hyper-parameters of feed forward neural network and gene expression programming with particle swarm optimization with PSO is proposed, which demonstrated that the implementation of artificial intelligence models with optimization routine can lead to optimized models for accurate prediction of water quality.

29 citations