scispace - formally typeset
Search or ask a question
Author

Ali Dorri

Bio: Ali Dorri is an academic researcher from Queensland University of Technology. The author has contributed to research in topics: Blockchain & Computer science. The author has an hindex of 18, co-authored 63 publications receiving 3171 citations. Previous affiliations of Ali Dorri include Islamic Azad University & Commonwealth Scientific and Industrial Research Organisation.

Papers published on a yearly basis

Papers
More filters
Proceedings ArticleDOI
13 Mar 2017
TL;DR: This paper shows that the proposed BC-based smart home framework is secure by thoroughly analysing its security with respect to the fundamental security goals of confidentiality, integrity, and availability, and presents simulation results to highlight that the overheads are insignificant relative to its security and privacy gains.
Abstract: Internet of Things (IoT) security and privacy remain a major challenge, mainly due to the massive scale and distributed nature of IoT networks. Blockchain-based approaches provide decentralized security and privacy, yet they involve significant energy, delay, and computational overhead that is not suitable for most resource-constrained IoT devices. In our previous work, we presented a lightweight instantiation of a BC particularly geared for use in IoT by eliminating the Proof of Work (POW) and the concept of coins. Our approach was exemplified in a smart home setting and consists of three main tiers namely: cloud storage, overlay, and smart home. In this paper we delve deeper and outline the various core components and functions of the smart home tier. Each smart home is equipped with an always online, high resource device, known as “miner” that is responsible for handling all communication within and external to the home. The miner also preserves a private and secure BC, used for controlling and auditing communications. We show that our proposed BC-based smart home framework is secure by thoroughly analysing its security with respect to the fundamental security goals of confidentiality, integrity, and availability. Finally, we present simulation results to highlight that the overheads (in terms of traffic, processing time and energy consumption) introduced by our approach are insignificant relative to its security and privacy gains.

1,340 citations

Journal ArticleDOI
TL;DR: It is argued that blockchain (BC), a disruptive technology that has found many applications from cryptocurrencies to smart contracts, is a potential solution to these challenges and is proposed a BC-based architecture to protect the privacy of users and to increase the security of the vehicular ecosystem.
Abstract: Interconnected smart vehicles offer a range of sophisticated services that benefit the vehicle owners, transport authorities, car manufacturers, and other service providers. This potentially exposes smart vehicles to a range of security and privacy threats such as location tracking or remote hijacking of the vehicle. In this article, we argue that blockchain (BC), a disruptive technology that has found many applications from cryptocurrencies to smart contracts, is a potential solution to these challenges. We propose a BC-based architecture to protect the privacy of users and to increase the security of the vehicular ecosystem. Wireless remote software updates and other emerging services such as dynamic vehicle insurance fees are used to illustrate the efficacy of the proposed security architecture. We also qualitatively argue the resilience of the architecture against common security attacks.

627 citations

Proceedings ArticleDOI
18 Apr 2017
TL;DR: A lightweight BC-based architecture for IoT that virtually eliminates the overheads of classic BC, while maintaining most of its security and privacy benefits, is proposed.
Abstract: There has been increasing interest in adopting BlockChain (BC), that underpins the crypto-currency Bitcoin, in Internet of Things (IoT) for security and privacy. However, BCs are computationally expensive and involve high bandwidth overhead and delays, which are not suitable for most IoT devices. This paper proposes a lightweight BC-based architecture for IoT that virtually eliminates the overheads of classic BC, while maintaining most of its security and privacy benefits. IoT devices benefit from a private immutable ledger, that acts similar to BC but is managed centrally, to optimize energy consumption. High resource devices create an overlay network to implement a publicly accessible distributed BC that ensures end-to-end security and privacy. The proposed architecture uses distributed trust to reduce the block validation processing time. We explore our approach in a smart home setting as a representative case study for broader IoT applications. Qualitative evaluation of the architecture under common threat models highlights its effectiveness in providing security and privacy for IoT applications. Simulations demonstrate that our method decreases packet and processing overhead significantly compared to the BC implementation used in Bitcoin.

554 citations

Journal ArticleDOI
TL;DR: A Lightweight Scalable blockchain (LSB) is proposed that is optimized for IoT requirements while also providing end-to-end security and Qualitative arguments demonstrate that the approach is resilient to several security attacks.

373 citations

Posted Content
TL;DR: A new secure, private, and lightweight architecture for IoT, based on BC technology that eliminates the overhead of BC while maintaining most of its security and privacy benefits is proposed.
Abstract: The Internet of Things IoT is experiencing exponential growth in research and industry, but it still suffers from privacy and security vulnerabilities. Conventional security and privacy approaches tend to be inapplicable for IoT, mainly due to its decentralized topology and the resource-constraints of the majority of its devices. BlockChain BC that underpin the crypto-currency Bitcoin have been recently used to provide security and privacy in peer-to-peer networks with similar topologies to IoT. However, BCs are computationally expensive and involve high bandwidth overhead and delays, which are not suitable for IoT devices. This position paper proposes a new secure, private, and lightweight architecture for IoT, based on BC technology that eliminates the overhead of BC while maintaining most of its security and privacy benefits. The described method is investigated on a smart home application as a representative case study for broader IoT applications. The proposed architecture is hierarchical, and consists of smart homes, an overlay network and cloud storages coordinating data transactions with BC to provide privacy and security. Our design uses different types of BCs depending on where in the network hierarchy a transaction occurs, and uses distributed trust methods to ensure a decentralized topology. Qualitative evaluation of the architecture under common threat models highlights its effectiveness in providing security and privacy for IoT applications.

304 citations


Cited by
More filters
01 Jan 2003

3,093 citations

Proceedings ArticleDOI
13 Mar 2017
TL;DR: This paper shows that the proposed BC-based smart home framework is secure by thoroughly analysing its security with respect to the fundamental security goals of confidentiality, integrity, and availability, and presents simulation results to highlight that the overheads are insignificant relative to its security and privacy gains.
Abstract: Internet of Things (IoT) security and privacy remain a major challenge, mainly due to the massive scale and distributed nature of IoT networks. Blockchain-based approaches provide decentralized security and privacy, yet they involve significant energy, delay, and computational overhead that is not suitable for most resource-constrained IoT devices. In our previous work, we presented a lightweight instantiation of a BC particularly geared for use in IoT by eliminating the Proof of Work (POW) and the concept of coins. Our approach was exemplified in a smart home setting and consists of three main tiers namely: cloud storage, overlay, and smart home. In this paper we delve deeper and outline the various core components and functions of the smart home tier. Each smart home is equipped with an always online, high resource device, known as “miner” that is responsible for handling all communication within and external to the home. The miner also preserves a private and secure BC, used for controlling and auditing communications. We show that our proposed BC-based smart home framework is secure by thoroughly analysing its security with respect to the fundamental security goals of confidentiality, integrity, and availability. Finally, we present simulation results to highlight that the overheads (in terms of traffic, processing time and energy consumption) introduced by our approach are insignificant relative to its security and privacy gains.

1,340 citations

Journal ArticleDOI
TL;DR: A comprehensive classification of blockchain-enabled applications across diverse sectors such as supply chain, business, healthcare, IoT, privacy, and data management is presented, and key themes, trends and emerging areas for research are established.

1,310 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors conduct a systematic study on the security threats to blockchain and survey the corresponding real attacks by examining popular blockchain systems. And they also review the security enhancement solutions for blockchain, which could be used in the development of various blockchain systems, and suggest some future directions to stir research efforts into this area.

1,071 citations

Journal ArticleDOI
TL;DR: 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
Abstract: The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless communication networks are expected to provide global coverage, enhanced spectral/energy/cost efficiency, better intelligence level and security, etc. To meet these requirements, 6G networks will rely on new enabling technologies, i.e., air interface and transmission technologies and novel network architecture, such as waveform design, multiple access, channel coding schemes, multi-antenna technologies, network slicing, cell-free architecture, and cloud/fog/edge computing. Our vision on 6G is that it will have four new paradigm shifts. First, to satisfy the requirement of global coverage, 6G will not be limited to terrestrial communication networks, which will need to be complemented with non-terrestrial networks such as satellite and unmanned aerial vehicle (UAV) communication networks, thus achieving a space-air-ground-sea integrated communication network. Second, all spectra will be fully explored to further increase data rates and connection density, including the sub-6 GHz, millimeter wave (mmWave), terahertz (THz), and optical frequency bands. Third, facing the big datasets generated by the use of extremely heterogeneous networks, diverse communication scenarios, large numbers of antennas, wide bandwidths, and new service requirements, 6G networks will enable a new range of smart applications with the aid of artificial intelligence (AI) and big data technologies. Fourth, network security will have to be strengthened when developing 6G networks. This article provides a comprehensive survey of recent advances and future trends in these four aspects. Clearly, 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.

935 citations