scispace - formally typeset
Search or ask a question
Author

Ali Fatemi

Bio: Ali Fatemi is an academic researcher from University of Memphis. The author has contributed to research in topics: Fatigue limit & Stress concentration. The author has an hindex of 49, co-authored 201 publications receiving 9536 citations. Previous affiliations of Ali Fatemi include Iran University of Science and Technology & University of Toronto.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a modification to Brown and Miller's critical plane approach is proposed to predict multiaxial fatigue life under both in-phase and out-of-phase loading conditions.
Abstract: — A modification to Brown and Miller's critical plane approach is proposed to predict multiaxial fatigue life under both in-phase and out-of-phase loading conditions. The components of this modified parameter consist of the maximum shear strain amplitude and the maximum normal stress on the maximum shear strain amplitude plane. Additional cyclic hardening developed during out-of-phase loading is included in the normal stress term. Also, the mathematical formulation of this new parameter is such that variable amplitude loading can be accommodated. Experimental results from tubular specimens made of 1045 HR steel under in-phase and 90° out-of-phase axial-torsional straining using both sinusoidal and trapezoidal wave forms were correlated within a factor of about two employing this approach. Available Inconel 718 axial-torsional data including mean strain histories were also satisfactorily correlated using the aforementioned parameter.

1,493 citations

Journal ArticleDOI
TL;DR: A comprehensive review of cumulative fatigue damage theories for metals and their alloys, emphasizing the approaches developed between the early 1970s to the early 1990s, can be found in this paper, where the authors grouped these theories into six categories: linear damage rules, nonlinear damage curve and two-stage linearization approaches; life curve modification methods; approaches based on crack growth concepts; continuum damage mechanics models; and energy-based theories.

1,123 citations

Journal ArticleDOI
TL;DR: This paper reviews analysis approaches that are currently available for predicting fatigue life in rubber and both crack nucleation and crack growth approaches are considered.

403 citations

Journal ArticleDOI
TL;DR: In this paper, the authors attempted to catalog and analyze the published fatigue performance data of an additively manufactured alloy of significant technological interest, Ti-6Al-4V, focusing on uniaxial fatigue performance, discussing failure mechanisms, defects, microstructure and processing parameters.

387 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental study was conducted to investigate anisotropy effects on tensile properties of two short glass fiber reinforced thermoplastics, and mechanisms of failure were identified based on fracture surface microscopic analysis and crack propagation paths.
Abstract: An experimental study was conducted to investigate anisotropy effects on tensile properties of two short glass fiber reinforced thermoplastics. Tensile tests were performed in various mold flow directions and with two thicknesses. A shell–core morphology resulting from orientation distribution of fibers influenced the degree of anisotropy. Tensile strength and elastic modulus nonlinearly decreased with specimen angle and Tsai–Hill criterion was found to correlate variation of these properties with the fiber orientation. Variation of tensile toughness with fiber orientation and strain rate was evaluated and mechanisms of failure were identified based on fracture surface microscopic analysis and crack propagation paths. Fiber length, diameter, and orientation distribution mathematical models were also used along with analytical approaches to predict tensile strength and elastic modulus form tensile properties of constituent materials. Laminate analogy and modified Tsai–Hill criteria provided satisfactory predictions of elastic modulus and tensile strength, respectively.

340 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the emerging research on additive manufacturing of metallic materials is provided in this article, which provides a comprehensive overview of the physical processes and the underlying science of metallurgical structure and properties of the deposited parts.

4,192 citations

Journal ArticleDOI
TL;DR: In this paper, the recent progress on Ti6Al4V fabricated by three mostly developed additive manufacturing techniques-directed energy deposition (DED), selective laser melting (SLM) and electron beam melting (EBM)-is thoroughly investigated and compared.

1,248 citations

Journal ArticleDOI
TL;DR: In this article, a pneumatic actuator can bend from a linear to a quasicircular shape in 50 ms when pressurized at Δ P = 345 kPa.
Abstract: Soft robots actuated by infl ation of a pneumatic network (a “pneu-net”) of small channels in elastomeric materials are appealing for producing sophisticated motions with simple controls. Although current designs of pneu-nets achieve motion with large amplitudes, they do so relatively slowly (over seconds). This paper describes a new design for pneu-nets that reduces the amount of gas needed for infl ation of the pneu-net, and thus increases its speed of actuation. A simple actuator can bend from a linear to a quasicircular shape in 50 ms when pressurized at Δ P = 345 kPa. At high rates of pressurization, the path along which the actuator bends depends on this rate. When infl ated fully, the chambers of this new design experience only one-tenth the change in volume of that required for the previous design. This small change in volume requires comparably low levels of strain in the material at maximum amplitudes of actuation, and commensurately low rates of fatigue and failure. This actuator can operate over a million cycles without signifi cant degradation of performance. This design for soft robotic actuators combines high rates of actuation with high reliability of the actuator, and opens new areas of application for them.

1,158 citations

Journal ArticleDOI
TL;DR: A comprehensive review of cumulative fatigue damage theories for metals and their alloys, emphasizing the approaches developed between the early 1970s to the early 1990s, can be found in this paper, where the authors grouped these theories into six categories: linear damage rules, nonlinear damage curve and two-stage linearization approaches; life curve modification methods; approaches based on crack growth concepts; continuum damage mechanics models; and energy-based theories.

1,123 citations

Journal ArticleDOI
TL;DR: A review of published data on the mechanical properties of additively manufactured metallic materials can be found in this paper, where the additive manufacturing techniques utilized to generate samples covered in this review include powder bed fusion (eBM, SLM, DMLS) and directed energy deposition (eBF3).
Abstract: This article reviews published data on the mechanical properties of additively manufactured metallic materials. The additive manufacturing techniques utilized to generate samples covered in this review include powder bed fusion (e.g., EBM, SLM, DMLS) and directed energy deposition (e.g., LENS, EBF3). Although only a limited number of metallic alloy systems are currently available for additive manufacturing (e.g., Ti-6Al-4V, TiAl, stainless steel, Inconel 625/718, and Al-Si-10Mg), the bulk of the published mechanical properties information has been generated on Ti-6Al-4V. However, summary tables for published mechanical properties and/or key figures are included for each of the alloys listed above, grouped by the additive technique used to generate the data. Published values for mechanical properties obtained from hardness, tension/compression, fracture toughness, fatigue crack growth, and high cycle fatigue are included for as-built, heat-treated, and/or HIP conditions, when available. The effects of test...

1,093 citations