scispace - formally typeset
Search or ask a question
Author

Ali H. Sayed

Bio: Ali H. Sayed is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: Adaptive filter & Optimization problem. The author has an hindex of 81, co-authored 728 publications receiving 36030 citations. Previous affiliations of Ali H. Sayed include Harbin Engineering University & University of California, Los Angeles.


Papers
More filters
Journal ArticleDOI
TL;DR: This letter proposes two new variable step-size algorithms for normalized least mean square and affine projection that lead to faster convergence rate and lower misadjustment error.
Abstract: This letter proposes two new variable step-size algorithms for normalized least mean square and affine projection. The proposed schemes lead to faster convergence rate and lower misadjustment error.

529 citations

Journal ArticleDOI
TL;DR: This article is to show how several different variants of the recursive least-squares algorithm can be directly related to the widely studied Kalman filtering problem of estimation and control.
Abstract: Adaptive filtering algorithms fall into four main groups: recursive least squares (RLS) algorithms and the corresponding fast versions; QR- and inverse QR-least squares algorithms; least squares lattice (LSL) and QR decomposition-based least squares lattice (QRD-LSL) algorithms; and gradient-based algorithms such as the least-mean square (LMS) algorithm. Our purpose in this article is to present yet another approach, for the sake of achieving two important goals. The first one is to show how several different variants of the recursive least-squares algorithm can be directly related to the widely studied Kalman filtering problem of estimation and control. Our second important goal is to present all the different versions of the RLS algorithm in computationally convenient square-root forms: a prearray of numbers has to be triangularized by a rotation, or a sequence of elementary rotations, in order to yield a postarray of numbers. The quantities needed to form the next prearray can then be read off from the entries of the postarray, and the procedure can be repeated; the explicit forms of the rotation matrices are not needed in most cases. >

470 citations

Journal ArticleDOI
TL;DR: This paper addresses the problem of channel tracking and equalization for multi-input multi-output (MIMO) time-varying frequency-selective channels with good tracking behavior for multiuser fading ISI channels at the expense of higher complexity than conventional adaptive algorithms.
Abstract: This paper addresses the problem of channel tracking and equalization for multi-input multi-output (MIMO) time-varying frequency-selective channels. These channels model the effects of inter-symbol interference (ISI), co-channel interference (CCI), and noise. A low-order autoregressive model approximates the MIMO channel variation and facilitates tracking via a Kalman filter. Hard decisions to aid Kalman tracking come from a MIMO finite-length minimum-mean-squared-error decision-feedback equalizer (MMSE-DFE), which performs the equalization task. Since the optimum DFE for a wide range of channels produces decisions with a delay /spl Delta/ > 0, the Kalman filter tracks the channel with a delay. A channel prediction module bridges the time gap between the channel estimates produced by the Kalman filter and those needed for the DFE adaptation. The proposed algorithm offers good tracking behavior for multiuser fading ISI channels at the expense of higher complexity than conventional adaptive algorithms. Applications include synchronous multiuser detection of independent transmitters, as well as coordinated transmission through many transmitter/receiver antennas, for increased data rate.

467 citations

Journal ArticleDOI
TL;DR: It is shown that it is an extraordinary property of biological networks that sophisticated behavior is able to emerge from simple interactions among lower-level agents.
Abstract: Nature provides splendid examples of real-time learning and adaptation behavior that emerges from highly localized interactions among agents of limited capabilities. For example, schools of fish are remarkably apt at configuring their topologies almost instantly in the face of danger [1]: when a predator arrives, the entire school opens up to let the predator through and then coalesces again into a moving body to continue its schooling behavior. Likewise, in bee swarms, only a small fraction of the agents (about 5%) are informed, and these informed agents are able to guide the entire swarm of bees to their new hive [2]. It is an extraordinary property of biological networks that sophisticated behavior is able to emerge from simple interactions among lower-level agents [3].

458 citations

Journal ArticleDOI
TL;DR: This survey paper describes how strands of work that are important in two different fields, matrix theory and complex function theory, have come together in some work on fast computational algorithms for matrices with what the authors call displacement structure, and develops a fast triangularization procedure.
Abstract: In this survey paper, we describe how strands of work that are important in two different fields, matrix theory and complex function theory, have come together in some work on fast computational algorithms for matrices with what we call displacement structure. In particular, a fast triangularization procedure can be developed for such matrices, generalizing in a striking way an algorithm presented by Schur (1917) [J. Reine Angew. Math., 147 (1917), pp. 205–232] in a paper on checking when a power series is bounded in the unit disc. This factorization algorithm has a surprisingly wide range of significant applications going far beyond numerical linear algebra. We mention, among others, inverse scattering, analytic and unconstrained rational interpolation theory, digital filter design, adaptive filtering, and state-space least-squares estimation.

447 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This survey provides an overview of higher-order tensor decompositions, their applications, and available software.
Abstract: This survey provides an overview of higher-order tensor decompositions, their applications, and available software. A tensor is a multidimensional or $N$-way array. Decompositions of higher-order tensors (i.e., $N$-way arrays with $N \geq 3$) have applications in psycho-metrics, chemometrics, signal processing, numerical linear algebra, computer vision, numerical analysis, data mining, neuroscience, graph analysis, and elsewhere. Two particular tensor decompositions can be considered to be higher-order extensions of the matrix singular value decomposition: CANDECOMP/PARAFAC (CP) decomposes a tensor as a sum of rank-one tensors, and the Tucker decomposition is a higher-order form of principal component analysis. There are many other tensor decompositions, including INDSCAL, PARAFAC2, CANDELINC, DEDICOM, and PARATUCK2 as well as nonnegative variants of all of the above. The N-way Toolbox, Tensor Toolbox, and Multilinear Engine are examples of software packages for working with tensors.

9,227 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI

6,278 citations

01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations