scispace - formally typeset
Search or ask a question
Author

Ali Nakhaei Pour

Bio: Ali Nakhaei Pour is an academic researcher from Ferdowsi University of Mashhad. The author has contributed to research in topics: Catalysis & Fischer–Tropsch process. The author has an hindex of 27, co-authored 110 publications receiving 2060 citations. Previous affiliations of Ali Nakhaei Pour include Research Institute of Petroleum Industry.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effects of Mg, La and Ca promoters on the structure, surface area, reduction, carburization and catalytic behavior of precipitated Fe/Cu/SiO2 Fischer-Tropsch synthesis (FTS) catalysts were investigated.
Abstract: The effects of Mg, La and Ca promoters on the structure, surface area, reduction, carburization and catalytic behavior of precipitated Fe/Cu/SiO2 Fischer–Tropsch synthesis (FTS) catalysts were investigated. The catalysts are characterized using X-ray diffraction (XRD), H2 and CO temperature-programmed reduction (TPR) techniques. The catalysts were assessed in terms of their FTS activity and product selectivity using two superimposed Anderson–Schulz–Flory (ASF) models. The performance of the catalysts was tested in a fixed-bed reactor at 563 K, 1.7 MPa and feed (syngas with H2/CO molar ratio of 1) flow rates of 4.9 and 13.3 nl h−1 g(Fe)−1. It was found that Mg, La and Ca promoters have negligible effects on the textural properties of the catalyst. Promoter addition enhanced the surface basicity of the catalyst in the order Ca > Mg > La. Addition of the promoters with the atomic ratio of X/Fe = 0.02 (X = Ca, Mg and La) improved the reduction and carburization during the reduction and FTS reaction in the order of Ca > Mg > La. The promoters suppressed the rate of hydrogenation reaction in the order of Ca > Mg > La. The results also indicate that Mg, La and Ca promoters can improve the CO conversion and WGS reaction, suppress the formation of methane, enhance the selectivities to olefin and higher molecular weight products, enhance the break in ASF distributions in the order of Ca > Mg > La due to increasing the catalyst surface basicity and dropping the reducibility.

148 citations

Journal ArticleDOI
01 Aug 2008-Fuel
TL;DR: In this paper, the authors investigated the product distribution dependency on reaction conditions over both iron and iron-zeolite catalysts and showed that the average number of carbon decreases with H 2 /CO ratio increasing and the reaction temperature in product.

97 citations

Journal ArticleDOI
TL;DR: In this paper, a physical mixture of alkali-promoted iron catalyst with binder based on Fischer-Tropsch synthesis and an acidic co-catalyst (HZSM5) for syngas conversion to hydrocarbons was studied in a fixed bed micro reactor.

75 citations

Journal ArticleDOI
TL;DR: In this paper, three technical surfactants, with different structures and HLB (hydrophile-lipophile balance) values were employed and the effects of the HLB values on the hematite particle size were investigated.

72 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of nanoscale iron oxide particles on textural structure, reduction, carburization and catalytic behavior of precipitated iron catalyst in Fischer-Tropsch synthesis (FTS) are investigated.

65 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art progress on various heterogeneous cobalt-based catalysts for sulfate radical-based advanced oxidation processes (SR-AOPs) is reviewed.
Abstract: Recently sulfate radical-based advanced oxidation processes (SR-AOPs) attract increasing attention due to their capability and adaptability in decontamination. The couple of cobalt and peroxymonosulfate (PMS) is an efficient way to produce reactive sulfate radicals. This article reviews the state-of-the-art progress on various heterogeneous cobalt-based catalysts for PMS activation, including cobalt oxides, cobalt-ferrite and supported cobalt by diverse substrates. We summarize the intrinsic properties of these catalysts and their fundamental behaviors in PMS activation, as well as synthetic approaches. In addition, influencing factors and synergistic techniques of Co/PMS systems in organic degradation and possible environmental applications are also discussed. Finally, we propose perspectives on challenges related to cobalt-based catalysts, heterogeneous Co/PMS systems and their potential applications in practical environmental cleanup.

1,553 citations

Journal ArticleDOI
TL;DR: The characterization techniques detecting the bulk nature and surface properties as well as the effects of various functionalization approaches on modifying the surface properties for specific applications in catalysis including heterogeneous catalysis, photocatalysis, photoelectrocatalysis and electrocatalysis are highlighted.
Abstract: Carbon nanotubes are promising materials for various applications. In recent years, progress in manufacturing and functionalizing carbon nanotubes has been made to achieve the control of bulk and surface properties including the wettability, acid–base properties, adsorption, electric conductivity and capacitance. In order to gain the optimal benefit of carbon nanotubes, comprehensive understanding on manufacturing and functionalizing carbon nanotubes ought to be systematically developed. This review summarizes methodologies of manufacturing carbon nanotubes via arc discharge, laser ablation and chemical vapor deposition and functionalizing carbon nanotubes through surface oxidation and activation, doping of heteroatoms, halogenation, sulfonation, grafting, polymer coating, noncovalent functionalization and nanoparticle attachment. The characterization techniques detecting the bulk nature and surface properties as well as the effects of various functionalization approaches on modifying the surface properties for specific applications in catalysis including heterogeneous catalysis, photocatalysis, photoelectrocatalysis and electrocatalysis are highlighted.

541 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the progress in gasification techniques and key generation pathways for biofuel production, process design and integration and socio-environmental impacts of biofuel generation are discussed, with the goal of investigating gasification-to-biofuels credentials as a sustainable and eco-friendly technology.

478 citations

Journal ArticleDOI
TL;DR: This perspective presents current state of the art and outlook in synthesis of light olefins, dimethyl ether, liquid fuels, and alcohols through two leading hydrogenation mechanisms: methanol reaction and Fischer-Tropsch based carbon dioxide hydrogenation.
Abstract: Recently, carbon dioxide capture and conversion, along with hydrogen from renewable resources, provide an alternative approach to synthesis of useful fuels and chemicals. People are increasingly interested in developing innovative carbon dioxide hydrogenation catalysts, and the pace of progress in this area is accelerating. Accordingly, this perspective presents current state of the art and outlook in synthesis of light olefins, dimethyl ether, liquid fuels, and alcohols through two leading hydrogenation mechanisms: methanol reaction and Fischer-Tropsch based carbon dioxide hydrogenation. The future research directions for developing new heterogeneous catalysts with transformational technologies, including 3D printing and artificial intelligence, are provided. Carbon dioxide (CO2) capture and conversion provide an alternative approach to synthesis of useful fuels and chemicals. Here, Ye et al. give a comprehensive perspective on the current state of the art and outlook of CO2 catalytic hydrogenation to the synthesis of light olefins, dimethyl ether, liquid fuels, and alcohols.

423 citations