scispace - formally typeset
Search or ask a question
Author

Alice J.S. Fox

Bio: Alice J.S. Fox is an academic researcher from Hospital for Special Surgery. The author has contributed to research in topics: Tendon & Meniscus (anatomy). The author has an hindex of 18, co-authored 20 publications receiving 2991 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The unique and complex structure of articular cartilage makes treatment and repair or restoration of the defects challenging for the patient, the surgeon, and the physical therapist.
Abstract: Articular cartilage is the highly specialized connective tissue of diarthrodial joints. Its principal function is to provide a smooth, lubricated surface for articulation and to facilitate the transmission of loads with a low frictional coefficient (Figure 1). Articular cartilage is devoid of blood vessels, lymphatics, and nerves and is subject to a harsh biomechanical environment. Most important, articular cartilage has a limited capacity for intrinsic healing and repair. In this regard, the preservation and health of articular cartilage are paramount to joint health. Figure 1. Gross photograph of healthy articular cartilage in an adult human knee. Injury to articular cartilage is recognized as a cause of significant musculoskeletal morbidity. The unique and complex structure of articular cartilage makes treatment and repair or restoration of the defects challenging for the patient, the surgeon, and the physical therapist. The preservation of articular cartilage is highly dependent on maintaining its organized architecture.

1,835 citations

Journal ArticleDOI
TL;DR: This study highlights the structural, compositional, and functional characteristics of the menisci, which may be relevant to clinical presentations, diagnosis, and surgical repairs.
Abstract: Once described as a functionless embryonic remnant,162 the menisci are now known to be vital for the normal function and long-term health of the knee joint.§ The menisci increase stability for femorotibial articulation, distribute axial load, absorb shock, and provide lubrication and nutrition to the knee joint.4,91,152,153 Injuries to the menisci are recognized as a cause of significant musculoskeletal morbidity. The unique and complex structure of menisci makes treatment and repair challenging for the patient, surgeon, and physical therapist. Furthermore, long-term damage may lead to degenerative joint changes such as osteophyte formation, articular cartilage degeneration, joint space narrowing, and symptomatic osteoarthritis.36,45,92 Preservation of the menisci depends on maintaining their distinctive composition and organization.

361 citations

Journal ArticleDOI
TL;DR: The anatomical and biomechanical characteristics of the menisci are highlighted, which may be relevant to injury patterns and treatment options, and the advancements in treatment options of meniscal injury.
Abstract: Meniscal injuries are recognized as a cause of significant musculoskeletal morbidity. The menisci are vital for the normal function and long-term health of the knee joint. The purpose of this review is to provide current knowledge regarding the anatomy and biomechanical functions of the menisci, incidence, injury patterns and the advancements in treatment options of meniscal injury. A literature search was performed by a review of PubMed, Google Scholar, MEDLINE, and OVID for all relevant articles published between 1897 and 2014. This study highlights the anatomical and biomechanical characteristics of the menisci, which may be relevant to injury patterns and treatment options. An understanding of the normal anatomy and biomechanical functions of the knee menisci is a necessary prerequisite to understanding pathologies associated with the knee.

282 citations

Journal ArticleDOI
TL;DR: Large radial tears of the medial meniscus are not functionally equivalent to meniscectomies; the residual meniscal manipulation continues to provide some load transmission and distribution functions across the joint.
Abstract: Background: The menisci are integral to normal knee function. The purpose of this study was to measure the contact pressures transmitted to the medial tibial plateau under physiological loads as a function of the percentage of the meniscus involved by the radial tear or repair. Our hypotheses were that (1) there is a threshold size of radial tears above which contact mechanics are adversely affected, and (2) partial meniscectomy results in increased contact pressure compared with that found after meniscal repair. Methods: A knee simulator was used to apply physiological multidirectional dynamic gait loads across human cadaver knees. A sensor inserted below the medial meniscus recorded contact pressures in association with (1) an intact meniscus, (2) a radial tear involving 30% of the meniscal rim width, (3) a radial tear involving 60% of the width, (4) a radial tear involving 90% of the width, (5) an inside-out repair with horizontal mattress sutures, and (6) a partial meniscectomy. The effects of these different types of meniscal manipulation on the magnitude and location of the peak contact pressure were assessed at 14% and 45% of the gait cycle. Results: The peak tibial contact pressure in the intact knees was 6 ± 0.5 MPa and 7.4 ± 0.6 MPa at 14% and 45% of the gait cycle, respectively. The magnitude and location of the peak contact pressure were not affected by radial tears involving up to 60% of the meniscal rim width. Radial tears involving 90% resulted in a posterocentral shift in peak-pressure location manifested by an increase in pressure in that quadrant of 1.3 ± 0.5 MPa at 14% of the gait cycle relative to the intact condition. Inside-out mattress suture repair of a 90% tear did not restore the location of the pressure peak to that of the intact knee. Partial meniscectomy led to a further increase in contact pressure in the posterocentral quadrant of 1.4 ± 0.7 MPa at 14% of the gait cycle. Conclusions: Large radial tears of the medial meniscus are not functionally equivalent to meniscectomies; the residual meniscus continues to provide some load transmission and distribution functions across the joint. Clinical Relevance: The results of this study support meniscal preservation and repair of medial radial tears.

248 citations

Journal ArticleDOI
TL;DR: Sustained hyperglycemia impairs tendon-bone healing after rotator cuff repair in this rodent model and has significant clinical implications for the expected outcomes of soft tissue repair or reconstructive procedures in diabetic patients with poor glycemic control.

170 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work aims to provide a comprehensive overview of electrospun nanofibers, including the principle, methods, materials, and applications, and highlights the most relevant and recent advances related to the applications by focusing on the most representative examples.
Abstract: Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made with regard to the development of electrospinning methods and engineering of electrospun nanofibers to suit or enable various applications. We aim to provide a comprehensive overview of electrospinning, including the principle, methods, materials, and applications. We begin with a brief introduction to the early history of electrospinning, followed by discussion of its principle and typical apparatus. We then discuss its renaissance over the past two decades as a powerful technology for the production of nanofibers with diversified compositions, structures, and properties. Afterward, we discuss the applications of electrospun nanofibers, including their use as "smart" mats, filtration membranes, catalytic supports, energy harvesting/conversion/storage components, and photonic and electronic devices, as well as biomedical scaffolds. We highlight the most relevant and recent advances related to the applications of electrospun nanofibers by focusing on the most representative examples. We also offer perspectives on the challenges, opportunities, and new directions for future development. At the end, we discuss approaches to the scale-up production of electrospun nanofibers and briefly discuss various types of commercial products based on electrospun nanofibers that have found widespread use in our everyday life.

2,289 citations

Journal ArticleDOI
TL;DR: Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation.
Abstract: Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in a vast majority of cellular processes and is fundamentally important throughout life. TGF-β/BMPs have widely recognized roles in bone formation during mammalian development and exhibit versatile regulatory functions in the body. Signaling transduction by TGF-β/BMPs is specifically through both canonical Smad-dependent pathways (TGF-β/BMP ligands, receptors and Smads) and non-canonical Smad-independent signaling pathway (e.g. p38 mitogen-activated protein kinase pathway, MAPK). Following TGF-β/BMP induction, both the Smad and p38 MAPK pathways converge at the Runx2 gene to control mesenchymal precursor cell differentiation. The coordinated activity of Runx2 and TGF-β/BMP-activated Smads is critical for formation of the skeleton. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in bone from studies of genetic mouse models and human diseases caused by the disruption of TGF-β/BMP signaling. This review also highlights the different modes of cross-talk between TGF-β/BMP signaling and the signaling pathways of MAPK, Wnt, Hedgehog, Notch, and FGF in osteoblast differentiation and bone formation.

1,308 citations

Journal ArticleDOI
TL;DR: You could look for impressive publication by the title of Basic Biomechanics Of The Musculoskeletal System by panamabustickets.com Studio to aid you obtain originality about the book you check out.
Abstract: You could look for impressive publication by the title of Basic Biomechanics Of The Musculoskeletal System by panamabustickets.com Studio Presently, you can conveniently to review every publication by online and download without spending great deals time for seeing book stores. Your best publication's title is here! You can discover your book to aid you obtain originality about the book you check out. Locate them in zip, txt, word, rar, kindle, ppt, and pdf report. basic biomechanics mccc basic biomechanics “it is important when learning about how the body moves (kinesiology) to also learn about the forces placed on the body that cause the movement.” lippert, p93

532 citations

Journal ArticleDOI
TL;DR: The fundamental problems encountered in this field are described and recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues are reviewed.

420 citations

Journal ArticleDOI
TL;DR: This review summarizes the current understanding of the disease pathogenesis, invasive and non-invasive animal models, imaging modalities, and pain assessment techniques in the animals.
Abstract: Osteoarthritis (OA) is one of the most commonly occurring forms of arthritis in the world today. It is a debilitating chronic illness causing pain and immense discomfort to the affected individual. Significant research is currently ongoing to understand its pathophysiology and develop successful treatment regimens based on this knowledge. Animal models have played a key role in achieving this goal. Animal models currently used to study osteoarthritis can be classified based on the etiology under investigation, primary osteoarthritis, and post-traumatic osteoarthritis, to better clarify the relationship between these models and the pathogenesis of the disease. Non-invasive animal models have shown significant promise in understanding early osteoarthritic changes. Imaging modalities play a pivotal role in understanding the pathogenesis of OA and the correlation with pain. These imaging studies would also allow in vivo surveillance of the disease as a function of time in the animal model. This review summarizes the current understanding of the disease pathogenesis, invasive and non-invasive animal models, imaging modalities, and pain assessment techniques in the animals.

370 citations