scispace - formally typeset
Search or ask a question
Author

Alicia Huici Montagud

Bio: Alicia Huici Montagud is an academic researcher. The author has contributed to research in topics: Cohort & Case-control study. The author has an hindex of 3, co-authored 3 publications receiving 649 citations.

Papers
More filters
Journal Article
TL;DR: The risk for high versus low levels of CAs was similar in subjects heavily exposed to carcinogens and in those who had never, to their knowledge, been exposed to any major carcinogenic agent during their lifetime, supporting the idea that chromosome damage itself is involved in the pathway to cancer.
Abstract: An increased risk of cancer in healthy individuals with high levels of chromosomal aberrations (CAs) in peripheral blood lymphocytes has been described in recent epidemiological studies. This association did not appear to be modified by sex, age, country, or time since CA test, whereas the role played by exposure to carcinogens is still uncertain because of the requisite information concerning occupation and lifestyle was lacking. We evaluated in the present study whether CAs predicted cancer because they were the result of past exposure to carcinogens or because they were an intermediate end point in the pathway leading to disease. A nested case-control study was performed on 93 incident cancer cases and 62 deceased cancer cases coming from two prospective cohort studies performed in Nordic countries (Denmark, Finland, Norway, and Sweden) and Italy. For each case, four controls matched by country, sex, year of birth, and year of CA test were randomly selected. Occupational exposure and smoking habit were assessed by a collaborative group of occupational hygienists. Logistic regression models indicated a statistically significant increase in risk for subjects with a high level of CAs compared to those with a low level in the Nordic cohort (odds ratio, 2.35; 95% confidence interval, 1.31-4.23) and in the Italian cohort (odds ratio, 2.66; 95% confidence interval, 1.26-5.62). These estimates were not affected by the inclusion of occupational exposure level and smoking habit in the regression model. The risk for high versus low levels of CAs was similar in subjects heavily exposed to carcinogens and in those who had never, to their knowledge, been exposed to any major carcinogenic agent during their lifetime, supporting the idea that chromosome damage itself is involved in the pathway to cancer. The results have important ramifications for the understanding of the role played by sporadic chromosome damage for the origin of neoplasia-associated CAs.

518 citations

Journal ArticleDOI
TL;DR: Nordic and Italian cohorts were established, and preliminary results indicated a predictive value of CA frequency for cancer risk, whereas no such associations were observed for SCE or MN, but it is not clear whether these biomarkers also may serve as biomarkers for genotoxic effects which will result in an enhanced cancer risk.
Abstract: The cytogenetic endpoints in peripheral blood lymphocytes: chromosomal aberrations (CA), sister chromatid exchange (SCE) and micronuclei (MN) are established biomarkers of exposure for mutagens or carcinogens in the work environment. However, it is not clear whether these biomarkers also may serve as biomarkers for genotoxic effects which will result in an enhanced cancer risk. In order to assess this problem, Nordic and Italian cohorts were established, and preliminary results from these two studies indicated a predictive value of CA frequency for cancer risk, whereas no such associations were observed for SCE or MN. A collaborative study between the Nordic and Italian research groups, will enable a more thorough evaluation of the cancer predictivity of the cytogenetic endpoints. We here report on the establishment of a joint data base comprising 5271 subjects, examined 1965-1988 for at least one cytogenetic biomarker. Totally, 3540 subjects had been examined for CA, 2702 for SCE and 1496 for MN. These cohorts have been followed-up with respect to subsequent cancer mortality or cancer incidence, and the expected values have been calculated from rates derived from the general populations in each country. Stratified cohort analyses will be performed with respect to the levels of the cytogenetic biomarkers. The importance of potential effect modifiers such as gender, age at test, and time since test, will be evaluated using Poisson regression models. The remaining two potential effect modifiers, occupational exposures and smoking, will be assessed in a case-referent study within the study base.

99 citations

Book ChapterDOI
TL;DR: A pooled analysis of the updated cohorts will now be performed, allowing a more solid evaluation of cytogenetic biomarkers in healthy subjects, and the importance of potential effect modifiers, such as gender, age at testing, and time since testing, will be evaluated using Poisson regression models.
Abstract: It has not previously been clear whether cytogenetic biomarkers in healthy subjects will predict cancer. Earlier analyses of a Nordic and an Italian cohort indicated predictivity for chromosomal aberrations (CAS) but not for sister chromatid exchanges (SCES). A pooled analysis of the updated cohorts, forming a joint study base of 5271 subjects, will now be performed, allowing a more solid evaluation. The importance of potential effect modifiers, such as gender, age at testing, and time since testing, will be evaluated using Poisson regression models. Two other potential effect modifiers, occupational exposures and smoking, will be assessed in a case-referent study within the study base.

38 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preliminary evidence is provided that MN frequency in PBL is a predictive biomarker of cancer risk within a population of healthy subjects and in all national cohorts and for all major cancer sites.
Abstract: The frequency of micronuclei (MN) in peripheral blood lymphocytes (PBL) is extensively used as a biomarker of chromosomal damage and genome stability in human populations. Much theoretical evidence has been accumulated supporting the causal role of MN induction in cancer development, although prospective cohort studies are needed to validate MN as a cancer risk biomarker. A total of 6718 subjects from of 10 countries, screened in 20 laboratories for MN frequency between 1980 and 2002 in ad hoc studies or routine cytogenetic surveillance, were selected from the database of the HUman MicroNucleus (HUMN) international collaborative project and followed up for cancer incidence or mortality. To standardize for the inter-laboratory variability subjects were classified according to the percentiles of MN distribution within each laboratory as low, medium or high frequency. A significant increase of all cancers incidence was found for subjects in the groups with medium (RR = 1.84; 95% CI: 1.28-2.66) and high MN frequency (RR = 1.53; 1.04-2.25). The same groups also showed a decreased cancer-free survival, i.e. P = 0.001 and P = 0.025, respectively. This association was present in all national cohorts and for all major cancer sites, especially urogenital (RR = 2.80; 1.17-6.73) and gastro-intestinal cancers (RR = 1.74; 1.01-4.71). The results from the present study provide preliminary evidence that MN frequency in PBL is a predictive biomarker of cancer risk within a population of healthy subjects. The current wide-spread use of the MN assay provides a valuable opportunity to apply this assay in the planning and validation of cancer surveillance and prevention programs.

911 citations

Journal ArticleDOI
TL;DR: The majority of studies on cytogenetic biomarkers in pesticide-exposed workers have indicated some dose-dependent effects, with increasing duration or intensity of exposure, but data at present on the effect of genetic polymorphism on susceptibility to pesticides does not allow any conclusion.
Abstract: Pesticides constitute a heterogeneous category of chemicals specifically designed for the control of pests, weeds or plant diseases. Pesticides have been considered potential chemical mutagens: experimental data revealed that various agrochemical ingredients possess mutagenic properties inducing mutations, chromosomal alterations or DNA damage. Biological monitoring provides a useful tool to estimate the genetic risk deriving from an integrated exposure to a complex mixture of chemicals. Studies available in scientific literature have essentially focused on cytogenetic end-points to evaluate the potential genotoxicity of pesticides in occupationally exposed populations, including pesticide manufacturing workers, pesticide applicators, floriculturists and farm workers. A positive association between occupational exposure to complex pesticide mixtures and the presence of chromosomal aberrations (CA), sister-chromatid exchanges (SCE) and micronuclei (MN) has been detected in the majority of the studies, although a number of these failed to detect cytogenetic damage. Conflicting results from cytogenetic studies reflect the heterogeneity of the groups studied with regard to chemicals used and exposure conditions. Genetic damage associated with pesticides occurs in human populations subject to high exposure levels due to intensive use, misuse or failure of control measures. The majority of studies on cytogenetic biomarkers in pesticide-exposed workers have indicated some dose-dependent effects, with increasing duration or intensity of exposure. Chromosomal damage induced by pesticides appears to have been transient in acute or discontinuous exposure, but cumulative in continuous exposure to complex agrochemical mixtures. Data available at present on the effect of genetic polymorphism on susceptibility to pesticides does not allow any conclusion.

660 citations

Journal ArticleDOI
Julian Peto1
17 May 2001-Nature
TL;DR: The remarkable advances in cell and molecular biology over the past two decades have transformed the scope and methods of cancer epidemiology, and modern epidemiological studies often depend on genetic, biochemical or viral assays that had not been developed 20 years ago.
Abstract: By the early 1980s, epidemiologists had identified many important causes of cancer. They had also proposed the 'multi-stage' model of cancer, although none of the hypothesized events in human carcinogenesis had then been identified. The remarkable advances in cell and molecular biology over the past two decades have transformed the scope and methods of cancer epidemiology. There have been a few new discoveries based purely on traditional methods, and many long-suspected minor risks have been estimated more precisely. But modern epidemiological studies often depend on genetic, biochemical or viral assays that had not been developed 20 years ago.

637 citations

Journal ArticleDOI
TL;DR: Micronutrient deficiency may explain why the quarter of the population that eats the fewest fruits and vegetables has about double the cancer rate for most types of cancer when compared to the quarter with the highest intake.
Abstract: A deficiency of any of the micronutrients: folic acid, Vitamin B12, Vitamin B6, niacin, Vitamin C, Vitamin E, iron, or zinc, mimics radiation in damaging DNA by causing single- and double-strand breaks, oxidative lesions, or both. For example, the percentage of the US population that has a low intake ( 20%. A level of folate deficiency causing chromosome breaks was present in approximately 10% of the US population, and in a much higher percentage of the poor. Folate deficiency causes extensive incorporation of uracil into human DNA (4 million/cell), leading to chromosomal breaks. This mechanism is the likely cause of the increased colon cancer risk associated with low folate intake. Some evidence, and mechanistic considerations, suggest that Vitamin B12 (14% US elderly) and B6 (10% of US) deficiencies also cause high uracil and chromosome breaks. Micronutrient deficiency may explain, in good part, why the quarter of the population that eats the fewest fruits and vegetables (five portions a day is advised) has about double the cancer rate for most types of cancer when compared to the quarter with the highest intake. For example, 80% of American children and adolescents and 68% of adults do not eat five portions a day. Common micronutrient deficiencies are likely to damage DNA by the same mechanism as radiation and many chemicals, appear to be orders of magnitude more important, and should be compared for perspective. Remedying micronutrient deficiencies should lead to a major improvement in health and an increase in longevity at low cost.

528 citations

Journal Article
TL;DR: The risk for high versus low levels of CAs was similar in subjects heavily exposed to carcinogens and in those who had never, to their knowledge, been exposed to any major carcinogenic agent during their lifetime, supporting the idea that chromosome damage itself is involved in the pathway to cancer.
Abstract: An increased risk of cancer in healthy individuals with high levels of chromosomal aberrations (CAs) in peripheral blood lymphocytes has been described in recent epidemiological studies. This association did not appear to be modified by sex, age, country, or time since CA test, whereas the role played by exposure to carcinogens is still uncertain because of the requisite information concerning occupation and lifestyle was lacking. We evaluated in the present study whether CAs predicted cancer because they were the result of past exposure to carcinogens or because they were an intermediate end point in the pathway leading to disease. A nested case-control study was performed on 93 incident cancer cases and 62 deceased cancer cases coming from two prospective cohort studies performed in Nordic countries (Denmark, Finland, Norway, and Sweden) and Italy. For each case, four controls matched by country, sex, year of birth, and year of CA test were randomly selected. Occupational exposure and smoking habit were assessed by a collaborative group of occupational hygienists. Logistic regression models indicated a statistically significant increase in risk for subjects with a high level of CAs compared to those with a low level in the Nordic cohort (odds ratio, 2.35; 95% confidence interval, 1.31-4.23) and in the Italian cohort (odds ratio, 2.66; 95% confidence interval, 1.26-5.62). These estimates were not affected by the inclusion of occupational exposure level and smoking habit in the regression model. The risk for high versus low levels of CAs was similar in subjects heavily exposed to carcinogens and in those who had never, to their knowledge, been exposed to any major carcinogenic agent during their lifetime, supporting the idea that chromosome damage itself is involved in the pathway to cancer. The results have important ramifications for the understanding of the role played by sporadic chromosome damage for the origin of neoplasia-associated CAs.

518 citations