scispace - formally typeset
Search or ask a question
Author

Alina Deutsch

Other affiliations: GlobalFoundries
Bio: Alina Deutsch is an academic researcher from IBM. The author has contributed to research in topics: Transmission line & Signal integrity. The author has an hindex of 27, co-authored 122 publications receiving 3236 citations. Previous affiliations of Alina Deutsch include GlobalFoundries.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors analyzed short, medium, and long on-chip interconnections having linewidths of 0.45-52 /spl mu/m in a five-metal-layer structure.
Abstract: Short, medium, and long on-chip interconnections having linewidths of 0.45-52 /spl mu/m are analyzed in a five-metal-layer structure. We study capacitive coupling for short lines, inductive coupling for medium-length lines, inductance and resistance of the current return path in the power buses, and line resistive losses for the global wiring. Design guidelines and technology changes are proposed to achieve minimum delay and contain crosstalk for local and global wiring. Conditional expressions are given to determine when transmission-line effects are important for accurate delay and crosstalk prediction.

397 citations

Journal ArticleDOI
TL;DR: The technical challenges and recent progress made in the development of silicon carrier technology for potential new applications are described.
Abstract: System-on-Package (SOP) technology based on silicon carriers has the potential to provide modular design flexibility and high-performance integration of heterogeneous chip technologies and to support robust chip manufacturing with high-yield/low-cost chips for a wide range of two- and three-dimensional product applications. Key technology enablers include silicon through-vias, high-density wiring, high-I/O chip interconnection, and supporting test and assembly technologies. The silicon through-vias are a key feature permitting efficient area array signal, power, and ground interconnection through these thinned silicon packages. High-density wiring and high-density chip I/O interconnection can enable tight integration of heterogeneous chip technologies which approximate the performance of an integrated system-on-chip with a "virtual chip" using the silicon package for integration. Silicon carrier fabrication leverages existing manufacturing capability and mid-UV lithography to provide very dense package wiring following CMOS back-end-of-line design rules. Further, the thermal expansion of the silicon carrier package matches the chip, which helps maintain reliability even as the high-density chip microbump interconnections scale to smaller size. In addition to heterogeneous chip integration, SOP products may leverage the integration of passive components, active devices, and electro-optic structures to enhance system-level performance while also maintaining functional test capability and known good chips when needed. This paper describes the technical challenges and recent progress made in the development of silicon carrier technology for potential new applications.

246 citations

Journal ArticleDOI
01 Apr 2001
TL;DR: This paper reviews the status of present day on-chip wiring design methodologies and understanding and design guidelines are given for using modeling and simulation techniques that have been previously used for package interconnections to teach designers how to make better use of available technologies.
Abstract: This paper reviews the status of present day on-chip wiring design methodologies and understanding. A brief explanation is given of the fundamental transmission-line properties that should be considered for accurate prediction of crosstalk, common-mode noise and clock skew. The deficiencies of RC-circuit representation are highlighted and design guidelines are given for using modeling and simulation techniques that have been previously used for package interconnections. Such techniques are believed to teach designers how to make better use of available technologies and help them architect systems that operate with many-GHz clock rates.

222 citations

Journal ArticleDOI
TL;DR: The paper addresses the problems found on lossy lines, such as reflections, rise-time slowdown, increased delay, attenuation, and crosstalk, and suggests methods for controlling these effects in order to maintain distortion-free propagation of high-speed signals.
Abstract: This paper addresses some of the problems encountered in propagating high-speed signals on lossy transmission lines encountered in high-performance computers. A technique is described for including frequency-dependent losses, such as skin effect and dielectric dispersion, in transmission line analyses. The disjoint group of available tools is brought together, and their relevance to the propagation of high-speed pulses in digital circuit applications is explained. Guidelines are given for different interconnection technologies to indicate where the onset of severe dispersion takes place. Experimental structures have been built and tested, and this paper reports on their electrical performance and demonstrates the agreement between measured data and waveforms derived from analysis. The paper addresses the problems found on lossy lines, such as reflections, rise-time slowdown, increased delay, attenuation, and crosstalk, and suggests methods for controlling these effects in order to maintain distortion-free propagation of high-speed signals.

215 citations


Cited by
More filters
Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations

Journal ArticleDOI
01 Apr 2001
TL;DR: Wires that shorten in length as technologies scale have delays that either track gate delays or grow slowly relative to gate delays, which is good news since these "local" wires dominate chip wiring.
Abstract: Concern about the performance of wires wires in scaled technologies has led to research exploring other communication methods. This paper examines wire and gate delays as technologies migrate from 0.18-/spl mu/m to 0.035-/spl mu/m feature sizes to better understand the magnitude of the the wiring problem. Wires that shorten in length as technologies scale have delays that either track gate delays or grow slowly relative to gate delays. This result is good news since these "local" wires dominate chip wiring. Despite this scaling of local wire performance, computer-aided design (CAD) tools must still become move sophisticated in dealing with these wires. Under scaling, the total number of wires grows exponentially, so CAD tools will need to handle an ever-growing percentage of all the wires in order to keep designer workloads constant. Global wires present a more serious problem to designers. These are wires that do not scale in length since they communicate signals across the chip. The delay of these wives will remain constant if repeaters are used meaning that relative to gate delays, their delays scale upwards. These increased delays for global communication will drive architectures toward modular designs with explicit global latency mechanisms.

1,486 citations

Journal ArticleDOI
01 Jun 2000
TL;DR: Optical interconnects to silicon CMOS chips are discussed in this paper, where various arguments for introducing optical interconnections to silicon chips are summarized, and the challenges for optical, optoelectronic, and integration technologies are discussed.
Abstract: The various arguments for introducing optical interconnections to silicon CMOS chips are summarized, and the challenges for optical, optoelectronic, and integration technologies are discussed. Optics could solve many physical problems of interconnects, including precise clock distribution, system synchronization (allowing larger synchronous zones, both on-chip and between chips), bandwidth and density of long interconnections, and reduction of power dissipation. Optics may relieve a broad range of design problems, such as crosstalk, voltage isolation, wave reflection, impedence matching, and pin inductance. It may allow continued scaling of existing architectures and enable novel highly interconnected or high-bandwidth architectures. No physical breakthrough is required to implement dense optical interconnects to silicon chips, though substantial technological work remains. Cost is a significant barrier to practical introduction, though revolutionary approaches exist that might achieve economies of scale. An Appendix analyzes scaling of on-chop global electrical interconnects, including line inductance and the skin effect, both of which impose significant additional constraints on future interconnects.

1,233 citations

Patent
06 Dec 2002
TL;DR: In this article, a very high density field programmable memory (FPM) is described. And the array is formed vertically above a substrate using several layers, each layer of which includes vertically fabricated memory cells.
Abstract: A very high density field programmable memory is disclosed. An array is formed vertically above a substrate using several layers, each layer of which includes vertically fabricated memory cells. The cell in an N level array may be formed with N+1 masking steps plus masking steps needed for contacts. Maximum use of self alignment techniques minimizes photolithographic limitations. In one embodiment the peripheral circuits are formed in a silicon substrate and an N level array is fabricated above the substrate.

1,212 citations