scispace - formally typeset
Search or ask a question
Author

Aline Bozec

Bio: Aline Bozec is an academic researcher from University of Erlangen-Nuremberg. The author has contributed to research in topics: Arthritis & Osteoclast. The author has an hindex of 31, co-authored 84 publications receiving 3169 citations. Previous affiliations of Aline Bozec include Research Institute of Molecular Pathology & BBVA Compass.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that autoantibody formation in response to citrullinated vimentin directly induces bone loss, providing a link between the adaptive immune system and bone.
Abstract: Autoimmunity is complicated by bone loss. In human rheumatoid arthritis (RA), the most severe inflammatory joint disease, autoantibodies against citrullinated proteins are among the strongest risk factors for bone destruction. We therefore hypothesized that these autoantibodies directly influence bone metabolism. Here, we found a strong and specific association between autoantibodies against citrullinated proteins and serum markers for osteoclast-mediated bone resorption in RA patients. Moreover, human osteoclasts expressed enzymes eliciting protein citrullination, and specific N-terminal citrullination of vimentin was induced during osteoclast differentiation. Affinity-purified human autoantibodies against mutated citrullinated vimentin (MCV) not only bound to osteoclast surfaces, but also led to robust induction of osteoclastogenesis and bone-resorptive activity. Adoptive transfer of purified human MCV autoantibodies into mice induced osteopenia and increased osteoclastogenesis. This effect was based on the inducible release of TNF-α from osteoclast precursors and the subsequent increase of osteoclast precursor cell numbers with enhanced expression of activation and growth factor receptors. Our data thus suggest that autoantibody formation in response to citrullinated vimentin directly induces bone loss, providing a link between the adaptive immune system and bone.

598 citations

Journal ArticleDOI
TL;DR: Anti-inflammatory cytokines counterbalance the chronic activation of innate and adaptive immune cells in rheumatoid arthritis anducing anti-inflammatory pathways and the resolution of inflammation is an attractive therapeutic option for patients with RA to achieve long-term disease control.
Abstract: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by a failure of spontaneous resolution of inflammation. Although the pro-inflammatory cytokines and mediators that trigger RA have been the focus of intense investigations, the regulatory and anti-inflammatory cytokines responsible for the suppression and resolution of disease in a context-dependent manner have been less well characterized. However, knowledge of the pathways that control the suppression and resolution of inflammation in RA is clinically relevant and conceptually important for understanding the pathophysiology of the disease and for the development of treatments that enable long-term remission. Cytokine-mediated processes such as the activation of T helper 2 cells by IL-4 and IL-13, the resolution of inflammation by IL-9, IL-5-induced eosinophil expansion, IL-33-mediated macrophage polarization, the production of IL-10 by regulatory B cells and IL-27-mediated suppression of lymphoid follicle formation are all involved in governing the regulation and resolution of inflammation in RA. By better understanding these immune-regulatory signalling pathways, new therapeutic strategies for RA can be envisioned that aim to balance and resolve, rather than suppress, inflammation.

357 citations

Journal ArticleDOI
TL;DR: Fostering IL-9-mediated ILC2 activation may offer a novel therapeutic approach inducing resolution of inflammation rather than suppression of inflammatory responses, as patients with rheumatoid arthritis in remission exhibited high numbers of IL- 9+ ILC 2s in joints and the circulation.
Abstract: Inflammatory diseases such as arthritis are chronic conditions that fail to resolve spontaneously. While the cytokine and cellular pathways triggering arthritis are well defined, those responsible for the resolution of inflammation are incompletely characterized. Here we identified interleukin (IL)-9-producing type 2 innate lymphoid cells (ILC2s) as the mediators of a molecular and cellular pathway that orchestrates the resolution of chronic inflammation. In mice, the absence of IL-9 impaired ILC2 proliferation and activation of regulatory T (Treg) cells, and resulted in chronic arthritis with excessive cartilage destruction and bone loss. In contrast, treatment with IL-9 promoted ILC2-dependent Treg activation and effectively induced resolution of inflammation and protection of bone. Patients with rheumatoid arthritis in remission exhibited high numbers of IL-9+ ILC2s in joints and the circulation. Hence, fostering IL-9-mediated ILC2 activation may offer a novel therapeutic approach inducing resolution of inflammation rather than suppression of inflammatory responses.

206 citations

Journal ArticleDOI
TL;DR: Evidence is provided for a role of RANKL signaling in the pathogenesis of T2DM and if so, translation to the clinic may be feasible given current pharmacological strategies to lower RankL activity to treat osteoporosis.
Abstract: Stefan Kiechl and colleagues show that blockade of receptor activator of nuclear factor-κB (RANKL) signaling in hepatocytes by cell type–specific genetic deletion of its receptor promotes greater insulin sensitivity in both a genetic and a nutritional model of type 2 diabetes. They also show epidemiological evidence that elevated serum concentrations of soluble RANKL are a risk factor for the development of this disease. Hepatic insulin resistance is a driving force in the pathogenesis of type 2 diabetes mellitus (T2DM) and is tightly coupled with excessive storage of fat and the ensuing inflammation within the liver1,2,3. There is compelling evidence that activation of the transcription factor nuclear factor-κB (NF-κB) and downstream inflammatory signaling pathways systemically and in the liver are key events in the etiology of hepatic insulin resistance and β-cell dysfunction, although the molecular mechanisms involved are incompletely understood3,4,5,6. We here test the hypothesis that receptor activator of NF-κB ligand (RANKL), a prototypic activator of NF-κB, contributes to this process using both an epidemiological and experimental approach. In the prospective population-based Bruneck Study, a high serum concentration of soluble RANKL emerged as a significant (P < 0.001) and independent risk predictor of T2DM manifestation. In close agreement, systemic or hepatic blockage of RANKL signaling in genetic and nutritional mouse models of T2DM resulted in a marked improvement of hepatic insulin sensitivity and amelioration or even normalization of plasma glucose concentrations and glucose tolerance. Overall, this study provides evidence for a role of RANKL signaling in the pathogenesis of T2DM. If so, translation to the clinic may be feasible given current pharmacological strategies to lower RANKL activity to treat osteoporosis.

204 citations

Journal ArticleDOI
10 Jul 2008-Nature
TL;DR: It is shown that the Fos-related protein Fra-2 controls osteoclast survival and size, and these findings offer potential targets for the treatment of syndromes associated with increased osteoporosis.
Abstract: Osteoclasts are cells that resorb bone. Too many of them, and osteoporosis — a common metabolic disorder of the skeleton — can result, as well as several other diseases. Although the protein c-Fos plays an essential part in the formation of osteoclasts, the specific role of related protein Fra-2 has been unclear. Here Fra-2 is shown to control osteoclast survival and size in newborn mice, in a process involving a novel biochemical pathway that includes the protein LIF as well as hypoxia. The Fra-2 exerts this effect from within the placenta, rather than the embryo itself. This suggests that placental-induced hypoxia during embryogenesis leads to giant osteoclast formation in young pups. This work provides the basis for developing new strategies aimed at manipulating osteoclast activity, improving disease diagnostics and understanding the pathogenesis of bone loss syndromes. This paper shows that Fra-2 controls osteoclast survival and size in newborn mice, in a process involving a novel biochemical pathway that includes the protein LIF as well as hypoxia. Osteoclasts are multinucleated haematopoietic cells that resorb bone. Increased osteoclast activity causes osteoporosis, a disorder resulting in a low bone mass and a high risk of fractures1. Increased osteoclast size and numbers are also a hallmark of other disorders, such as Paget’s disease and multiple myeloma2. The protein c-Fos, a component of the AP-1 transcription factor complex, is essential for osteoclast differentiation3. Here we show that the Fos-related protein Fra-2 controls osteoclast survival and size. The bones of Fra-2-deficient newborn mice have giant osteoclasts, and signalling through leukaemia inhibitory factor (LIF) and its receptor is impaired. Similarly, newborn animals lacking LIF have giant osteoclasts, and we show that LIF is a direct transcriptional target of Fra-2 and c-Jun. Moreover, bones deficient in Fra-2 and LIF are hypoxic and express increased levels of hypoxia-induced factor 1α (HIF1α) and Bcl-2. Overexpression of Bcl-2 is sufficient to induce giant osteoclasts in vivo, whereas Fra-2 and LIF affect HIF1α through transcriptional modulation of the HIF prolyl hydroxylase PHD2. This pathway is operative in the placenta, because specific inactivation of Fra-2 in the embryo alone does not cause hypoxia or the giant osteoclast phenotype. Thus placenta-induced hypoxia during embryogenesis leads to the formation of giant osteoclasts in young pups. These findings offer potential targets for the treatment of syndromes associated with increased osteoclastogenesis.

177 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review comprehensively covers literature reports which have investigated specifically the effect of dissolution products of silicate bioactive glasses and glass-ceramics in relation to osteogenesis and angiogenesis and focuses on the ion release kinetics of the materials and the specific effect of the released ionic dissolution products on human cell behaviour.

2,056 citations

Journal ArticleDOI
16 Jan 2014-Cell
TL;DR: New perspective is gained on the roles played by adipocyte in a variety of homeostatic processes and on the mechanisms used by adipocytes to communicate with other tissues and how these relationships are altered during metabolic disease and how they might be manipulated to restore metabolic health.

1,746 citations

BookDOI
01 Jan 2011
TL;DR: Firm evidence is provided for Foxp3+CD25+CD4+ Treg cells as an indispensable cellular constituent of the normal immune system for establishing and maintaining immunologic self-tolerance and immune homeostasis.
Abstract: Despite the skepticism that once prevailed among immunologists, it is now widely accepted that the normal immune system harbors a T-cell population, called regulatory T cells (Treg cells), specialized for immune suppression. It was first shown that depletion of a T-cell subpopulation from normal rodents produced autoimmune disease. Search for a molecular marker specific for such autoimmune-preventive Treg cells has revealed that the majority, if not all, of them constitutively express the CD25 molecule as depletion of CD25+CD4+ T cells spontaneously evokes autoimmune disease in otherwise normal rodents. The expression of CD25 by Treg cells has made it possible to delineate their developmental pathways, in particular their thymic development, and establish simple in vitro assay for assessing their suppressive activity. The marker and the in vitro assay have helped to identify human Treg cells with similar functional and phenotypic characteristics. Recent efforts have shown that natural Treg cells specifically express the transcription factor Foxp3 and that mutations of the Foxp3 gene produce a variety of immunological diseases in humans and rodents. Specific expression of Foxp3 in natural Treg cells has enabled their functional and developmental characterization by genetic approach. These studies altogether have provided firm evidence for Foxp3+CD25+CD4+ Treg cells as an indispensable cellular constituent of the normal immune system for establishing and maintaining immunologic self-tolerance and immune homeostasis. Treg cells are now within the scope of clinical use to treat immunological diseases and control physiological and pathological immune responses.

1,745 citations

Journal Article
TL;DR: Schulz et al. as discussed by the authors investigated whether adult macrophages all share a common developmental origin and found that a population of yolk-sac-derived, tissue-resident macophages was able to develop and persist in adult mice in the absence of hematopoietic stem cells.
Abstract: Macrophage Development Rewritten Macrophages provide protection against a wide variety of infections and critically shape the inflammatory environment in many tissues. These cells come in many flavors, as determined by differences in gene expression, cell surface phenotype and specific function. Schulz et al. (p. 86, published online 22 March) investigated whether adult macrophages all share a common developmental origin. Immune cells, including most macrophages, are widely thought to arise from hematopoietic stem cells (HSCs), which require the transcription factor Myb for their development. Analysis of Myb-deficient mice revealed that a population of yolk-sac–derived, tissue-resident macrophages was able to develop and persist in adult mice in the absence of HSCs. Importantly, yolk sac–derived macrophages also contributed substantially to the tissue macrophage pool even when HSCs were present. In mice, a population of tissue-resident macrophages arises independently of bone marrow–derived stem cells. Macrophages and dendritic cells (DCs) are key components of cellular immunity and are thought to originate and renew from hematopoietic stem cells (HSCs). However, some macrophages develop in the embryo before the appearance of definitive HSCs. We thus reinvestigated macrophage development. We found that the transcription factor Myb was required for development of HSCs and all CD11bhigh monocytes and macrophages, but was dispensable for yolk sac (YS) macrophages and for the development of YS-derived F4/80bright macrophages in several tissues, such as liver Kupffer cells, epidermal Langerhans cells, and microglia—cell populations that all can persist in adult mice independently of HSCs. These results define a lineage of tissue macrophages that derive from the YS and are genetically distinct from HSC progeny.

1,673 citations

19 Nov 2012

1,653 citations