scispace - formally typeset
Search or ask a question
Author

Aline da Silva Moreira

Bio: Aline da Silva Moreira is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Whole blood & Lisinopril. The author has co-authored 2 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: Blood transfusion prevented the aggravation of the breakdown of blood brain barrier after artemether treatment and decreased spleen congestion without affecting splenic lymphocyte populations.
Abstract: Pathological features observed in both human and experimental cerebral malaria (ECM) are endothelial dysfunction and changes in blood components. Blood transfusion has been routinely used in patients with severe malarial anemia and can also benefit comatose and acidotic malaria patients. In the present study Plasmodium berghei-infected mice were transfused intraperitoneally with 200 μL of whole blood along with 20 mg/kg of artemether. ECM mice showed severe thrombocytopenia and decreases in hematocrit. Artemether treatment markedly aggravated anemia within 24 h. Whole blood administration significantly prevented further drop in hematocrit and partially restored the platelet count. Increased levels of plasma angiopoietin-2 (Ang-2) remained high 24 h after artemether treatment but returned to normal levels 24 h after blood transfusion, indicating reversal to quiescence. Ang-1 was depleted in ECM mice and levels were not restored by any treatment. Blood transfusion prevented the aggravation of the breakdown of blood brain barrier after artemether treatment and decreased spleen congestion without affecting splenic lymphocyte populations. Critically, blood transfusion resulted in markedly improved survival of mice with ECM (75.9% compared to 50.9% receiving artemether only). These findings indicate that whole blood transfusion can be an effective adjuvant therapy for cerebral malaria.

4 citations

Posted ContentDOI
20 Oct 2021-bioRxiv
TL;DR: In this paper, the authors sought to determine whether lisinopril or losartan, as monotherapies or in combination, change tissue levels of ACE2 in healthy male and female mice.
Abstract: Angiotensin-converting enzyme 2 (ACE2) is the established cellular receptor for SARS-CoV-2. However, it is unclear whether ACE1 inhibitors (e.g., lisinopril) or angiotensin receptor blockers (e.g., losartan) alter tissue ACE2 expression. This study sought to determine whether lisinopril or losartan, as monotherapies or in combination, change tissue levels of ACE2 in healthy male and female mice. Mice were treated for 21 days with drinking water containing lisinopril (10 mg/kg/day), losartan (10 mg/kg/day), or both. A control group was given water without drug. ACE2 protein index, the ratio of ACE2 protein to total protein, was determined on tissues from the small intestine, lung, kidney, and brain. Oral lisinopril increased ACE2 protein index across all tissues (p

Cited by
More filters
Journal ArticleDOI
TL;DR: The neurocognitive deficits and behavioral alterations resulting from human naturally acquired infections and murine experimental models of malaria have gained more attention in recent years and therapies for them are required and demand advances in the understanding of neuropathogenesis.
Abstract: Typical of tropical and subtropical regions, malaria is caused by protozoa of the genus Plasmodium and is, still today, despite all efforts and advances in controlling the disease, a major issue of public health. Its clinical course can present either as the classic episodes of fever, sweating, chills and headache or as nonspecific symptoms of acute febrile syndromes and may evolve to severe forms. Survivors of cerebral malaria, the most severe and lethal complication of the disease, might develop neurological, cognitive and behavioral sequelae. This overview discusses the neurocognitive deficits and behavioral alterations resulting from human naturally acquired infections and murine experimental models of malaria. We highlighted recent reports of cognitive and behavioral sequelae of non-severe malaria, the most prevalent clinical form of the disease worldwide. These sequelae have gained more attention in recent years and therapies for them are required and demand advances in the understanding of neuropathogenesis. Recent studies using experimental murine models point to immunomodulation as a potential approach to prevent or revert neurocognitive sequelae of malaria.

7 citations

Journal ArticleDOI
TL;DR: In this paper , perillyl alcohol (POH) was applied to the human brain endothelial cell (HBEC) monolayers co-cultured with parasitised red blood cells (pRBCs) in brain microvessels.
Abstract: BACKGROUND Cerebral malaria (CM) is a severe immunovasculopathy caused for Plasmodium falciparum infection, which is characterised by the sequestration of parasitised red blood cells (pRBCs) in brain microvessels. Previous studies have shown that some terpenes, such as perillyl alcohol (POH), exhibit a marked efficacy in preventing cerebrovascular inflammation, breakdown of the brain-blood barrier (BBB) and brain leucocyte accumulation in experimental CM models. OBJECTIVE To analyse the effects of POH on the endothelium using human brain endothelial cell (HBEC) monolayers co-cultured with pRBCs. METHODOLOGY The loss of tight junction proteins (TJPs) and features of endothelial activation, such as ICAM-1 and VCAM-1 expression were evaluated by quantitative immunofluorescence. Microvesicle (MV) release by HBEC upon stimulation by P. falciparum was evaluated by flow cytometry. Finally, the capacity of POH to revert P. falciparum-induced HBEC monolayer permeability was examined by monitoring trans-endothelial electrical resistance (TEER). FINDINGS POH significantly prevented pRBCs-induced endothelial adhesion molecule (ICAM-1, VCAM-1) upregulation and MV release by HBEC, improved their trans-endothelial resistance, and restored their distribution of TJPs such as VE-cadherin, Occludin, and JAM-A. CONCLUSIONS POH is a potent monoterpene that is efficient in preventing P. falciparum-pRBCs-induced changes in HBEC, namely their activation, increased permeability and alterations of integrity, all parameters of relevance to CM pathogenesis.
Journal ArticleDOI
01 Jan 2022
TL;DR: In this article , the effects of intravenous whole blood compared to intravenous plasma on hematological parameters, vascular integrity, and survival in artemether-treated cerebral malaria (ECM) were evaluated.
Abstract: BACKGROUND Cerebral malaria is a lethal complication of Plasmodium falciparum infections in need of better therapies. Previous work in murine experimental cerebral malaria (ECM) indicated that the combination of artemether plus intraperitoneal whole blood improved vascular integrity and increased survival compared to artemether alone. However, the effects of blood or plasma transfusion administered via the intravenous route have not previously been evaluated in ECM. OBJECTIVES To evaluate the effects of intravenous whole blood compared to intravenous plasma on hematological parameters, vascular integrity, and survival in artemether-treated ECM. METHODS Mice with late-stage ECM received artemether alone or in combination with whole blood or plasma administered via the jugular vein. The outcome measures were hematocrit and platelets; plasma angiopoietin 1, angiopoietin 2, and haptoglobin; blood-brain barrier permeability; and survival. FINDINGS Survival increased from 54% with artemether alone to 90% with the combination of artemether and intravenous whole blood. Intravenous plasma lowered survival to 18%. Intravenous transfusion provided fast and pronounced recoveries of hematocrit, platelets, angiopoietins levels and blood brain barrier integrity. MAIN CONCLUSIONS The outcome of artemether-treated ECM was improved by intravenous whole blood but worsened by intravenous plasma. Compared to prior studies of transfusion via the intraperitoneal route, intravenous administration was more efficacious.
Journal ArticleDOI
TL;DR: A recent series of studies based on molecular, immunologic, and advanced neuroradiologic and machine-learning approaches have unraveled new trends and insights to better understand and focus on the key determinants of cerebral malaria in humans as discussed by the authors .
Abstract: No specific or adjunctive therapies exist to treat cerebral malaria (CM) as of date. CM is a neuropathological manifestation of the malaria infection in humans, caused by the hemoparasitic pathogen Plasmodium falciparum. Driven through a multitude of virulence factors, varied immune responses, variations in brain swelling with regard to the age of patients, parasite biomass, and parasite-typing, the essential pathogenetic mechanisms underlying clinical CM have remained elusive. However, a recent series of studies based on molecular, immunologic, and advanced neuroradiologic and machine-learning approaches have unraveled new trends and insights to better understand and focus on the key determinants of CM in humans. This could possibly be the beginning of the design of new and effective adjunctive therapies that may not be common or applicable to the entire malarious world, but that could, rather, be specific to the variations in the determinants of CM.