scispace - formally typeset
Search or ask a question
Author

Aline Lueckgen

Bio: Aline Lueckgen is an academic researcher from Charité. The author has contributed to research in topics: Self-healing hydrogels & Tissue engineering. The author has an hindex of 3, co-authored 4 publications receiving 94 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This alginate-based material platform with cell-empowered enzymatic degradation could prove useful in diverse tissue engineering contexts, such as regeneration and drug delivery.

83 citations

Journal ArticleDOI
TL;DR: Degradable biomaterials with tunable and decoupled mechanical and degradation behavior could be useful in many tissue engineering applications.

71 citations

Journal ArticleDOI
TL;DR: Alginate-based materials with two orthogonal crosslinking mechanisms: the spontaneous Diels-Alder reaction and the ultraviolet light-initiated thiol-ene reaction are explored, enabling the formation of dual crosslinked hydrogels with patterns in stiffness, biomolecule presentation, and degradation.

13 citations

Journal ArticleDOI
29 Jan 2021-Polymers
TL;DR: In this paper, an alginate hydrogel with tuneable and dynamic mechanical properties is presented, which can be functionalised with cues such as full-length fibronectin and protease-degradable sequences.
Abstract: Alginate is a polysaccharide used extensively in biomedical applications due to its biocompatibility and suitability for hydrogel fabrication using mild reaction chemistries. Though alginate has commonly been crosslinked using divalent cations, covalent crosslinking chemistries have also been developed. Hydrogels with tuneable mechanical properties are required for many biomedical applications to mimic the stiffness of different tissues. Here, we present a strategy to engineer alginate hydrogels with tuneable mechanical properties by covalent crosslinking of a norbornene-modified alginate using ultraviolet (UV)-initiated thiol-ene chemistry. We also demonstrate that the system can be functionalised with cues such as full-length fibronectin and protease-degradable sequences. Finally, we take advantage of alginate’s ability to be crosslinked covalently and ionically to design dual crosslinked constructs enabling dynamic control of mechanical properties, with gels that undergo cycles of stiffening–softening by adding and quenching calcium cations. Overall, we present a versatile hydrogel with tuneable and dynamic mechanical properties, and incorporate cell-interactive features such as cell-mediated protease-induced degradability and full-length proteins, which may find applications in a variety of biomedical contexts.

9 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of materials-design considerations for bone-tissue-engineering applications in both disease modelling and treatment of injuries and disease in humans, and highlight scalable technologies that can fabricate natural and synthetic biomaterials (polymers, bioceramics, metals and composites) into forms suitable for bone tissue engineering applications in human therapies and disease models.
Abstract: Successful materials design for bone-tissue engineering requires an understanding of the composition and structure of native bone tissue, as well as appropriate selection of biomimetic natural or tunable synthetic materials (biomaterials), such as polymers, bioceramics, metals and composites. Scalable fabrication technologies that enable control over construct architecture at multiple length scales, including three-dimensional printing and electric-field-assisted techniques, can then be employed to process these biomaterials into suitable forms for bone-tissue engineering. In this Review, we provide an overview of materials-design considerations for bone-tissue-engineering applications in both disease modelling and treatment of injuries and disease in humans. We outline the materials-design pathway from implementation strategy through selection of materials and fabrication methods to evaluation. Finally, we discuss unmet needs and current challenges in the development of ideal materials for bone-tissue regeneration and highlight emerging strategies in the field. Design of bone-tissue-engineering materials involves consideration of multiple, often conflicting, requirements. This Review discusses these considerations and highlights scalable technologies that can fabricate natural and synthetic biomaterials (polymers, bioceramics, metals and composites) into forms suitable for bone-tissue-engineering applications in human therapies and disease models.

630 citations

Journal ArticleDOI
TL;DR: A review of the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogel technologies, and how they relate to translational applications in medicine and the environment is presented in this paper.
Abstract: Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.

269 citations

Journal ArticleDOI
20 Oct 2020-Polymers
TL;DR: Alginate holds the promise of an effective product used in the food industry as well as in the management of metabolic disorders such as diabetes and obesity.
Abstract: Initially used extensively as an additive and ingredient in the food industry, alginate has become an important compound for a wide range of industries and applications, such as the medical, pharmaceutical and cosmetics sectors. In the food industry, alginate has been used to coat fruits and vegetables, as a microbial and viral protection product, and as a gelling, thickening, stabilizing or emulsifying agent. Its biocompatibility, biodegradability, nontoxicity and the possibility of it being used in quantum satis doses prompted scientists to explore new properties for alginate usage. Thus, the use of alginate has been expanded so as to be directed towards the pharmaceutical and biomedical industries, where studies have shown that it can be used successfully as biomaterial for wound, hydrogel, and aerogel dressings, among others. Furthermore, the ability to encapsulate natural substances has led to the possibility of using alginate as a drug coating and drug delivery agent, including the encapsulation of probiotics. This is important considering the fact that, until recently, encapsulation and coating agents used in the pharmaceutical industry were limited to the use of lactose, a potentially allergenic agent or gelatin. Obtained at a relatively low cost from marine brown algae, this hydrocolloid can also be used as a potential tool in the management of diabetes, not only as an insulin delivery agent but also due to its ability to improve insulin resistance, attenuate chronic inflammation and decrease oxidative stress. In addition, alginate has been recognized as a potential weight loss treatment, as alginate supplementation has been used as an adjunct treatment to energy restriction, to enhance satiety and improve weight loss in obese individuals. Thus, alginate holds the promise of an effective product used in the food industry as well as in the management of metabolic disorders such as diabetes and obesity. This review highlights recent research advances on the characteristics of alginate and brings to the forefront the beneficial aspects of using alginate, from the food industry to the biomedical field.

164 citations

Journal ArticleDOI
TL;DR: A detailed overview of the design and development of biopolymer hydrogels for biomedical applications, with an emphasis on biopolymers chemical modifications and cross-linking methods, is provided in this article.
Abstract: Biopolymers are natural polymers sourced from plants and animals, which include a variety of polysaccharides and polypeptides. The inclusion of biopolymers into biomedical hydrogels is of great interest because of their inherent biochemical and biophysical properties, such as cellular adhesion, degradation, and viscoelasticity. The objective of this Review is to provide a detailed overview of the design and development of biopolymer hydrogels for biomedical applications, with an emphasis on biopolymer chemical modifications and cross-linking methods. First, the fundamentals of biopolymers and chemical conjugation methods to introduce cross-linking groups are described. Cross-linking methods to form biopolymer networks are then discussed in detail, including (i) covalent cross-linking (e.g., free radical chain polymerization, click cross-linking, cross-linking due to oxidation of phenolic groups), (ii) dynamic covalent cross-linking (e.g., Schiff base formation, disulfide formation, reversible Diels-Alder reactions), and (iii) physical cross-linking (e.g., guest-host interactions, hydrogen bonding, metal-ligand coordination, grafted biopolymers). Finally, recent advances in the use of chemically modified biopolymer hydrogels for the biofabrication of tissue scaffolds, therapeutic delivery, tissue adhesives and sealants, as well as the formation of interpenetrating network biopolymer hydrogels, are highlighted.

146 citations

Journal ArticleDOI
TL;DR: In this review stimuli responsive dynamic covalent hydrogels are discussed on the basis of their chemistry and how the gels are increasingly used in novel applications.

126 citations