scispace - formally typeset
Search or ask a question
Author

Alireza Mashaghi

Bio: Alireza Mashaghi is an academic researcher from Leiden University. The author has contributed to research in topics: Medicine & Topology (electrical circuits). The author has an hindex of 26, co-authored 112 publications receiving 2699 citations. Previous affiliations of Alireza Mashaghi include University of Tehran & Delft University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: This review summarizes current knowledge of substance P and its receptors, as well as its physiological and pathological roles and discusses the clinical implications of its ability to modulate the immune response.
Abstract: Substance P is a peptide mainly secreted by neurons and is involved in many biological processes, including nociception and inflammation. Animal models have provided insights into the biology of this peptide and offered compelling evidence for the importance of substance P in cell-to-cell communication by either paracrine or endocrine signaling. Substance P mediates interactions between neurons and immune cells, with nerve-derived substance P modulating immune cell proliferation rates and cytokine production. Intriguingly, some immune cells have also been found to secrete substance P, which hints at an integral role of substance P in the immune response. These communications play important functional roles in immunity including mobilization, proliferation and modulation of the activity of immune cells. This review summarizes current knowledge of substance P and its receptors, as well as its physiological and pathological roles. We focus on recent developments in the immunobiology of substance P and discuss the clinical implications of its ability to modulate the immune response.

266 citations

Journal ArticleDOI
05 Jun 2009-Small
TL;DR: It is shown that the high binding affinity of poly(ethylene glycol)-gallol (PEG-gallol) allows freeze drying and re-dispersion of 9 +/- 2-nm iron oxide cores individually stabilized with approximately 9-nm-thick stealth coatings, yielding particle stability for at least 20 months.
Abstract: Magnetic resonance imaging (MRI), a non-invasive, non-radiative technique, is thought to lead to cellular or even molecular resolution if optimized targeted MR contrast agents are introduced. This would allow diagnosing progressive diseases in early stages. Here, it is shown that the high binding affinity of poly(ethylene glycol)-gallol (PEG-gallol) allows freeze drying and re-dispersion of 9 +/- 2-nm iron oxide cores individually stabilized with approximately 9-nm-thick stealth coatings, yielding particle stability for at least 20 months. Particle size, stability, and magnetic properties of PEGylated particles are compared to Feridex, a commercially available untargeted negative MR contrast agent. Biotin-PEG(3400)-gallol/methoxy-PEG(550)-gallol stabilized nanoparticles are further functionalized with biotinylated human anti-VCAM-1 antibodies using the biotin-neutravidin linkage. Binding kinetics and excellent specificity of these nanoparticles are demonstrated using quartz crystal microbalance with dissipation monitoring (QCM-D). These MR contrast agents can be functionalized with any biotinylated ligand at controlled ligand surface density, rendering them a versatile research tool.

209 citations

Journal ArticleDOI
TL;DR: It is demonstrated that administration of the biodegradable nanoparticles leads to resolution of brain edema, protection of axons in hippocampus region, and myelination of hippocampal area after cerebral ischemic stroke in a murine model.
Abstract: Ischemic cerebral stroke is a major cause of death and morbidity. Currently, no neuroprotective agents have been shown to impact the clinical outcomes in cerebral stroke cases. Here, we report therapeutic effects of Se nanoparticles on ischemic stroke in a murine model. Anti-transferrin receptor monoclonal antibody (OX26)-PEGylated Se nanoparticles (OX26-PEG-Se NPs) were designed and synthesized and their neuroprotective effects were measured using in vitro and in vivo approaches. We demonstrate that administration of the biodegradable nanoparticles leads to resolution of brain edema, protection of axons in hippocampus region, and myelination of hippocampal area after cerebral ischemic stroke. Our nanoparticle design ensures efficient targeting and minimal side effects. Hematological and biochemical analyses revealed no undesired NP-induced changes. To gain mechanistic insights into the therapeutic effects of these particles, we characterized the changes to the relevant inflammatory and metabolic signaling pathways. We assessed metabolic regulator mTOR and related signaling pathways such as hippo, Ubiquitin-proteasome system (ERK5), Tsc1/Tsc2 complex, FoxO1, wnt/β-catenine signaling pathway. Moreover, we examined the activity of jak2/stat3 signaling pathways and Adamts1, which are critically involved in inflammation. Together, our study provides a promising treatment strategy for cerebral stroke based on Se NP induced suppression of excessive inflammation and oxidative metabolism.

191 citations

Journal ArticleDOI
TL;DR: Understanding of mechanistic details for an adsorption process for which conformational changes and ordering occur can be elucidated using DPI and greatly enhanced by modeling of optical birefringence.
Abstract: Supramolecular conformation and molecular orientation was monitored during supported lipid bilayer (SLB) formation using dual polarization interferometry (DPI). DPI was shown to enable real time sensitive determination of birefringence of the lipid bilayer together with thickness or refractive index (with the other a fixed value). This approach removes differences in mass loading due to anisotropy, so the mass becomes solely a function of the lipid dn/dc value. DPI measurements show highly reproducible qualitative and quantitative results for adsorption of liposomes of different lipid compositions and in buffers with or without CaCl2. The packing of solvent-free self-assembled SLBs is shown to differ from other preparation methods. Birefringence analysis accompanied by mass and thickness measurements shows characteristic features of vesicle adsorption and SLB formation kinetics previously not demonstrated by evanescent optical techniques, including indications of percolation-type rupture of clusters of li...

164 citations

Journal ArticleDOI
17 Nov 2016-Nature
TL;DR: Tans et al. as mentioned in this paper showed that the bacterial Hsp70 homologue, known as DnaK, relies on its "groove" to bind unfolded proteins, but can also bind folded structures, thanks to its "lid", with control of ATP hydrolysis by co-chaperones allowing regulation of such contrasting effects.
Abstract: Hsp70 binds unfolded protein segments in its groove, but can also bind and stabilize folded protein structures, owing to its moveable lid, with ATP hydrolysis and co-chaperones allowing control of these contrasting effects The protein-chaperone system centred on Hsp70 performs a variety of cellular control tasks, including folding assistance, protection against aggregation, trafficking and regulation of enzyme activity, a versatility that has been hard to reconcile with structural data, which suggest that Hsp70 only binds extended polypeptide segments Now, using laser molecular tweezers, Sander Tans and colleagues show that the bacterial homolog of Hsp70, known as DnaK, relies on its 'groove' to bind unfolded proteins, but can also bind folded structures, thanks to its 'lid', with control of ATP hydrolysis by co-chaperones allowing regulation of such contrasting effects Contrary to known stabilization mechanisms, through precise structural fit, Hsp70 can stabilize a vast repertoire of client proteins, through a clamp-like, ATP-driven conformational change The Hsp70 system is a central hub of chaperone activity in all domains of life Hsp70 performs a plethora of tasks, including folding assistance, protection against aggregation, protein trafficking, and enzyme activity regulation1,2,3,4,5, and interacts with non-folded chains, as well as near-native, misfolded, and aggregated proteins6,7,8,9,10 Hsp70 is thought to achieve its many physiological roles by binding peptide segments that extend from these different protein conformers within a groove that can be covered by an ATP-driven helical lid11,12,13,14,15 However, it has been difficult to test directly how Hsp70 interacts with protein substrates in different stages of folding and how it affects their structure Moreover, recent indications of diverse lid conformations in Hsp70–substrate complexes raise the possibility of additional interaction mechanisms15,16,17,18 Addressing these issues is technically challenging, given the conformational dynamics of both chaperone and client, the transient nature of their interaction, and the involvement of co-chaperones and the ATP hydrolysis cycle19 Here, using optical tweezers, we show that the bacterial Hsp70 homologue (DnaK) binds and stabilizes not only extended peptide segments, but also partially folded and near-native protein structures The Hsp70 lid and groove act synergistically when stabilizing folded structures: stabilization is abolished when the lid is truncated and less efficient when the groove is mutated The diversity of binding modes has important consequences: Hsp70 can both stabilize and destabilize folded structures, in a nucleotide-regulated manner; like Hsp90 and GroEL, Hsp70 can affect the late stages of protein folding; and Hsp70 can suppress aggregation by protecting partially folded structures as well as unfolded protein chains Overall, these findings in the DnaK system indicate an extension of the Hsp70 canonical model that potentially affects a wide range of physiological roles of the Hsp70 system

159 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Abstract: Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.

17,647 citations

Journal ArticleDOI
TL;DR: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors.
Abstract: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors. While the organization of the book is similar to previous editions, major emphasis has been placed on disorders that affect multiple organ systems. Important advances in genetics, immunology, and oncology are emphasized. Many chapters of the book have been rewritten and describe major advances in internal medicine. Subjects that received only a paragraph or two of attention in previous editions are now covered in entire chapters. Among the chapters that have been extensively revised are the chapters on infections in the compromised host, on skin rashes in infections, on many of the viral infections, including cytomegalovirus and Epstein-Barr virus, on sexually transmitted diseases, on diabetes mellitus, on disorders of bone and mineral metabolism, and on lymphadenopathy and splenomegaly. The major revisions in these chapters and many

6,968 citations

Journal ArticleDOI
TL;DR: This review provides an objective and comprehensive account of the cellular uptake of NPs and the underlying parameters controlling the nano-cellular interactions, along with the available analytical techniques to follow and track these processes.
Abstract: Nanoscale materials are increasingly found in consumer goods, electronics, and pharmaceuticals. While these particles interact with the body in myriad ways, their beneficial and/or deleterious effects ultimately arise from interactions at the cellular and subcellular level. Nanoparticles (NPs) can modulate cell fate, induce or prevent mutations, initiate cell–cell communication, and modulate cell structure in a manner dictated largely by phenomena at the nano–bio interface. Recent advances in chemical synthesis have yielded new nanoscale materials with precisely defined biochemical features, and emerging analytical techniques have shed light on nuanced and context-dependent nano-bio interactions within cells. In this review, we provide an objective and comprehensive account of our current understanding of the cellular uptake of NPs and the underlying parameters controlling the nano-cellular interactions, along with the available analytical techniques to follow and track these processes.

1,498 citations