scispace - formally typeset
Search or ask a question
Author

Alison J. Ong

Bio: Alison J. Ong is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Dopant & Monocrystalline silicon. The author has an hindex of 2, co-authored 2 publications receiving 380 citations. Previous affiliations of Alison J. Ong include Lawrence Berkeley National Laboratory.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the dopant-free electron and hole carrier-selective heterocontacts using alkali metal fluorides and metal oxides, respectively, in combination with passivating intrinsic amorphous silicon interlayers, were successfully developed and implemented.
Abstract: A salient characteristic of solar cells is their ability to subject photo-generated electrons and holes to pathways of asymmetrical conductivity—‘assisting’ them towards their respective contacts. All commercially available crystalline silicon (c-Si) solar cells achieve this by making use of doping in either near-surface regions or overlying silicon-based films. Despite being commonplace, this approach is hindered by several optoelectronic losses and technological limitations specific to doped silicon. A progressive approach to circumvent these issues involves the replacement of doped-silicon contacts with alternative materials which can also form ‘carrier-selective’ interfaces on c-Si. Here we successfully develop and implement dopant-free electron and hole carrier-selective heterocontacts using alkali metal fluorides and metal oxides, respectively, in combination with passivating intrinsic amorphous silicon interlayers, resulting in power conversion efficiencies approaching 20%. Furthermore, the simplified architectures inherent to this approach allow cell fabrication in only seven low-temperature (≤200 ∘C), lithography-free steps. This is a marked improvement on conventional doped-silicon high-efficiency processes, and highlights potential improvements on both sides of the cost-to-performance ratio for c-Si photovoltaics. The use of doped-silicon contacts in silicon solar cells adds cost and complexity to the fabrication process. These issues can now be circumvented by using dopant-free carrier-selective interfaces on silicon, realized by alkali metal fluorides and metal oxides.

443 citations

Proceedings ArticleDOI
05 Jun 2016
TL;DR: In this paper, a range of materials which have the potential to induce carrier-selectivity when applied to c-Si, including metals, metal oxides, alkali / alkaline earth metal salts, and organic conductors, are surveyed.
Abstract: In recent years a significant amount of effort has been devoted towards the development of dopant-free carrier selective contacts for crystalline silicon (c-Si) solar cells. This short manuscript surveys a range of materials which have the potential to induce carrier-selectivity when applied to c-Si, including metals, metal oxides, alkali / alkaline earth metal salts, and organic conductors. Simple Ohmic test structures are used to assess the selectivity of these materials, that is, hole contacts are tested on p-type c-Si and electron contacts on n-type c-Si. Among these alternatives, a number of systems with exceptional potential are identified.

22 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the dynamic field of crystalline silicon photovoltaics from a device-engineering perspective and give an up-to-date summary of promising recent pathways for further efficiency improvements and cost reduction employing novel carrierselective passivating contact schemes, as well as tandem multi-junction architectures, in particular those that combine silicon absorbers with organic-inorganic perovskite materials.
Abstract: With a global market share of about 90%, crystalline silicon is by far the most important photovoltaic technology today. This article reviews the dynamic field of crystalline silicon photovoltaics from a device-engineering perspective. First, it discusses key factors responsible for the success of the classic dopant-diffused silicon homojunction solar cell. Next it analyzes two archetypal high-efficiency device architectures – the interdigitated back-contact silicon cell and the silicon heterojunction cell – both of which have demonstrated power conversion efficiencies greater than 25%. Last, it gives an up-to-date summary of promising recent pathways for further efficiency improvements and cost reduction employing novel carrier-selective passivating contact schemes, as well as tandem multi-junction architectures, in particular those that combine silicon absorbers with organic–inorganic perovskite materials.

751 citations

Journal ArticleDOI
TL;DR: In this article, the efficiency of n-type silicon solar cells with a front side boron-doped emitter and a full-area tunnel oxide passivating electron contact was studied experimentally as a function of wafer thickness W and resistivity ρ b.

470 citations

Journal ArticleDOI
Donglei Zhou1, Dali Liu1, Gencai Pan1, Xu Chen1, Dongyu Li1, Wen Xu1, Xue Bai1, Hongwei Song1 
TL;DR: The doped perovskite nanocrystals are successfully explored as a downconverter of commercial silicon solar cells (SSCs) and the PCE of the SSCs is improved, with a relative enhancement of 18.8%.
Abstract: Quantum cutting can realize the emission of multiple near-infrared photons for each ultraviolet/visible photon absorbed, and has potential to significantly improve the photoelectric conversion efficiency (PCE) of solar cells. However, due to the lack of an ideal downconversion material, it has merely served as a principle in the laboratory until now. Here, the fabrication of a novel type of quantum cutting material, CsPbCl1.5 Br1.5 :Yb3+ , Ce3+ nanocrystals is presented. Benefiting from the larger absorption cross-section, weaker electron-phonon coupling, and higher inner luminescent quantum yield (146%), the doped perovskite nanocrystals are successfully explored as a downconverter of commercial silicon solar cells (SSCs). Noticeably, the PCE of the SSCs is improved from 18.1% to 21.5%, with a relative enhancement of 18.8%. This work exhibits a cheap, convenient, and effective way to enhance the PCE of SSCs, which may be commercially popularized in the future.

359 citations

Journal ArticleDOI
TL;DR: De Wolf et al. as mentioned in this paper reviewed the fundamental physical processes governing contact formation in crystalline silicon (c-Si) and identified the role passivating contacts play in increasing c-Si solar cell efficiencies beyond the limitations imposed by heavy doping and direct metallization.
Abstract: The global photovoltaic (PV) market is dominated by crystalline silicon (c-Si) based technologies with heavily doped, directly metallized contacts. Recombination of photo-generated electrons and holes at the contact regions is increasingly constraining the power conversion efficiencies of these devices as other performance-limiting energy losses are overcome. To move forward, c-Si PV technologies must implement alternative contacting approaches. Passivating contacts, which incorporate thin films within the contact structure that simultaneously supress recombination and promote charge-carrier selectivity, are a promising next step for the mainstream c-Si PV industry. In this work, we review the fundamental physical processes governing contact formation in c-Si. In doing so we identify the role passivating contacts play in increasing c-Si solar cell efficiencies beyond the limitations imposed by heavy doping and direct metallization. Strategies towards the implementation of passivating contacts in industrial environments are discussed. The development of passivating contacts holds great potential for enhancing the power conversion efficiency of silicon photovoltaics. Here, De Wolf et al. review recent advances in material design and device architecture, and discuss technical challenges to industrial fabrication.

326 citations