scispace - formally typeset
Search or ask a question
Author

Alisttair D. Kirkbride

Bio: Alisttair D. Kirkbride is an academic researcher from Université de Montréal. The author has contributed to research in topics: Turbulence & Flow (mathematics). The author has an hindex of 1, co-authored 1 publications receiving 246 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used an array of seven electromagnetic current meters with high resolution in both space and time to measure the streamwise velocity fluctuations in a gravel-bed river and found that large-scale turbulent flow structures occupied the entire depth of the flow and that they are elongated and narrow.
Abstract: In this paper, we present a detailed investigation of the size, scale and dynamics of macro-turbulent flow structures in gravel-bed rivers. We used an array of seven electromagnetic current meters with high resolution in both space and time to measure the streamwise velocity fluctuations in a gravel-bed river. The array was deployed successively in various configurations in order to quantify the vertical, lateral and longitudinal extent of the flow structures and to estimate their advecting velocities. To depict the spatial and temporal properties of the flow structures, we used space–time velocity matrices, space–time correlation analysis and coherent-structure detection schemes. The results show that the large-scale turbulent flow structures in a gravel-bed river occupy the entire depth of the flow and that they are elongated and narrow. The length of the structures is 3 to 5 times the flow depth while the width is between 0.5 and 1 times flow depth. In spite of the high roughness of the bed, these values are similar to those reported in the literature for laboratory experiments on large-scale turbulent flow structures. The dynamics of the large-scale turbulent flow structures investigated using flow visualization highlight the interactions between the outer flow region and the near-bed region. Our evidence suggests that large-scale flow incursions trigger ejections in the near-bed region that can develop into megabursts that can reach the water surface.

259 citations


Cited by
More filters
Journal ArticleDOI
James C. Liao1
TL;DR: New data are presented here which show that behaviour changes in altered flows when either the lateral line or vision is blocked, showing that fish rely on multi-modal sensory inputs to negotiate complex flow environments.
Abstract: Fishes suspended in water are subject to the complex nature of three-dimensional flows. Often, these flows are the result of abiotic and biotic sources that alter otherwise uniform flows, which then have the potential to perturb the swimming motions of fishes. The goal of this review is to highlight key studies that have contributed to a mechanistic and behavioural understanding of how perturbing flows affect fish. Most of our understanding of fish behaviour in turbulence comes from observations of natural conditions in the field and laboratory studies employing controlled perturbations, such as vortices generated in the wake behind simple geometric objects. Laboratory studies have employed motion analysis, flow visualization, electromyography, respirometry and sensory deprecation techniques to evaluate the mechanisms and physiological costs of swimming in altered flows. Studies show that flows which display chaotic and wide fluctuations in velocity can repel fishes, while flows that have a component of predictability can attract fishes. The ability to maintain stability in three-dimensional flows, either actively with powered movements or passively using the posture and intrinsic compliance of the body and fins, plays a large role in whether fish seek out or avoid turbulence. Fish in schools or current-swept habitats can benefit from altered flows using two distinct though not mutually exclusive mechanisms: flow refuging (exploiting regions of reduced flow relative to the earth frame of reference) and vortex capture (harnessing the energy of environmental vortices). Integrating how the physical environment affects organismal biomechanics with the more complex issue of behavioural choice requires consideration beyond simple body motions or metabolic costs. A fundamental link between these two ways of thinking about animal behaviour is how organisms sense and process information from the environment, which determines when locomotor behaviour is initiated and modulated. New data are presented here which show that behaviour changes in altered flows when either the lateral line or vision is blocked, showing that fish rely on multi-modal sensory inputs to negotiate complex flow environments. Integrating biomechanics and sensory biology to understand how fish swim in turbulent flow at the organismal level is necessary to better address population-level questions in the fields of fisheries management and ecology.

633 citations

Book
01 Jan 1993
TL;DR: Part I presents the statistical theory of turbulence, and Part 2 the coherent structures in open-channel flows and boundary layers.
Abstract: Part I presents the statistical theory of turbulence, and Part 2 the coherent structures in open-channel flows and boundary layers. The book is intended for advanced students and researchers in hydraulic research, fluid mechanics, environmental sciences and related disciplines. References Index.

371 citations

Book ChapterDOI
01 Jan 2005
TL;DR: In this paper, the authors present an overview of the main operational approaches of decision-making-based decision aid and discuss some more philosophical aspects of MCDA, such as the path of realism which leads to the quest for a discussion for discovering, the axiomatic path which is often associated with the quest of norms for prescribing, or the task of constructivism which goes hand-in-hand with the working hypothesis for recommending.
Abstract: The purpose of this introductory part is to present an overall view of what MCDA is today. In Section 1, I will attempt to bring answers to questions such as: what is it reasonable to expect from MCDA? Why decision aiding is more often multicriteria than monocriterion? What are the main limitations to objectivity? Section 2 will be devoted to a presentation of the conceptual architecture that constitutes the main keys for analyzing and structuring problem situations. Decision aiding cannot and must not be envisaged jointly with a hypothesis of perfect knowledge. Different ways for apprehending the various sources of imperfect knowledge will be introduced in Section 3. A robustness analysis is necessary in most cases. The crucial question of how can we take into account all criteria comprehensively in order to compare potential actions to one another will be tackled in Section 4. In this introductory part, I will only present a general framework for positioning the main operational approaches that exist today. In Section 5, I will discuss some more philosophical aspects of MCDA. For providing some aid in a decision context, we have to choose among different paths which one seems to be the most appropriate, or how to combine some of them: the path of realism which leads to the quest for a discussion for discovering, the axiomatic path which is often associated with the quest of norms for prescribing, or the path of constructivism which goes hand in hand with the quest of working hypothesis for recommending.

275 citations

Journal ArticleDOI
TL;DR: The Hydrodynamics of Aquatic Ecosystems (HOE) as discussed by the authors is an emerging research area at the interfaces between aquatic ecology, biomechanics and environmental fluid mechanics.
Abstract: The paper promotes an emerging research area at the interfaces between aquatic ecology, biomechanics and environmental fluid mechanics. This new area, Hydrodynamics of Aquatic Ecosystems, bridges these disciplines together and is defined as a study of flow-organism interactions at multiple scales with particular focus on relevant transport processes and mutual physical impacts. Being an important part of its mother disciplines, Hydrodynamics of Aquatic Ecosystems deals with two key interconnected issues: (i) physical interactions between flow and organisms (e.g. due to an interplay between flow-induced forces and reaction forces generated by organisms) and (ii) ecologically relevant mass-transfer-uptake processes (e.g. due to molecular and turbulent diffusion). Key concepts and tools of Hydrodynamics of Aquatic Ecosystems are outlined first and then a promising approach that may provide a unifying platform for coupling and integrating ecological, hydrodynamic and biomechanical processes, known as the double-averaging methodology (DAM), is discussed. Copyright © 2009 John Wiley & Sons, Ltd.

247 citations

Journal ArticleDOI
TL;DR: In this paper, a model of sand transport in water is produced by combining a turbulence-resolving large eddy simulation (LES) with a discrete element model (DEM) prescribing the motion of individual grains of medium sand.
Abstract: A model of sand transport in water is produced by combining a turbulence-resolving large eddy simulation (LES) with a discrete element model (DEM) prescribing the motion of individual grains of medium sand. The momentum effect of each particle on the fluid is calculated at the LES cell containing the particle, and the fluid velocity and pressure, interpolated to each particle center, is used to derive fluid force on each particle in the DEM. Eleven numerical experiments are conducted of an initially flat bed of particles. The experiments span a range of motion, from essentially no motion to vigorous suspension. Hydraulic roughness is found to increase abruptly at the transition from bed load to suspended load transport. Suspended sediment extracts momentum from the flow and decreases the rate of shear. Whereas, slightly higher in the flow, vertical drag by suspended grains damps turbulence and increases the rate of shear. Vertical sediment diffusivity and effective particle settling velocity are much smaller than is commonly assumed in suspended sediment models. The bed load experiments suggest that saltation by itself is a poor model of bed load sand transport. In contrast to expectations from saltation models, the peak bed load flux occurs at essentially the same level as the bed, and grains move slowly in frequent contact with other grains. Higher- and faster-moving bed load grains that can be considered to be in saltation represent a smaller portion of the total flux. Entrainment of bed load grains occurs in response to fluid penetration of the bed by high-vorticity turbulence structures embedded within broader high speed fluid regions referred to as a sweeps or high-speed wedges.

184 citations