scispace - formally typeset
Search or ask a question
Author

Allan Chris M. Ferreon

Bio: Allan Chris M. Ferreon is an academic researcher from Baylor College of Medicine. The author has contributed to research in topics: Protein folding & Intrinsically disordered proteins. The author has an hindex of 23, co-authored 39 publications receiving 3218 citations. Previous affiliations of Allan Chris M. Ferreon include Scripps Research Institute & University of California, San Diego.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the NS3/4A serine protease of hepatitis C virus (HCV) causes specific proteolysis of Toll-IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF or TICAM-1), an adaptor protein linking TLR3 to kinases responsible for activating IFN regulatory factor 3 (IRF-3) and NF-kappaB, transcription factors controlling a multiplicity of antiviral defenses.
Abstract: Toll-like receptors (TLRs) bind pathogen-specific ligands early in infection, initiating signaling pathways that lead to expression of multiple protective cellular genes. Many viruses have evolved strategies that block the effector mechanisms induced through these signaling pathways, but viral interference with critical proximal receptor interactions has not been described. We show here that the NS3/4A serine protease of hepatitis C virus (HCV), a virus notorious for its ability to establish persistent intrahepatic infection, causes specific proteolysis of Toll-IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF or TICAM-1), an adaptor protein linking TLR3 to kinases responsible for activating IFN regulatory factor 3 (IRF-3) and NF-kappaB, transcription factors controlling a multiplicity of antiviral defenses. NS3/4A-mediated cleavage of TRIF reduces its abundance and inhibits polyI:C-activated signaling through the TLR3 pathway before its bifurcation to IRF-3 and NF-kappaB. This uniquely broad mechanism of immune evasion potentially limits expression of multiple host defense genes, thereby promoting persistent infections with this medically important virus.

1,112 citations

Journal ArticleDOI
TL;DR: The results imply that the 2 folded structures are preencoded by the α-synuclein amino acid sequence, and are tunable by small-molecule supramolecular states and differing membrane properties, suggesting novel control elements for biological and amyloid regulation of α- Synuclein.
Abstract: We studied the coupled binding and folding of α-synuclein, an intrinsically disordered protein linked with Parkinson's disease. Using single-molecule fluorescence resonance energy transfer and correlation methods, we directly probed protein membrane association, structural distributions, and dynamics. Results revealed an intricate energy landscape on which binding of α-synuclein to amphiphilic small molecules or membrane-like partners modulates conformational transitions between a natively unfolded state and multiple α-helical structures. α-Synuclein conformation is not continuously tunable, but instead partitions into 2 main classes of folding landscape structural minima. The switch between a broken and an extended helical structure can be triggered by changing the concentration of binding partners or by varying the curvature of the binding surfaces presented by micelles or bilayers composed of the lipid-mimetic SDS. Single-molecule experiments with lipid vesicles of various composition showed that a low fraction of negatively charged lipids, similar to that found in biological membranes, was sufficient to drive α-synuclein binding and folding, resulting here in the induction of an extended helical structure. Overall, our results imply that the 2 folded structures are preencoded by the α-synuclein amino acid sequence, and are tunable by small-molecule supramolecular states and differing membrane properties, suggesting novel control elements for biological and amyloid regulation of α-synuclein.

383 citations

Journal ArticleDOI
20 Jun 2013-Nature
TL;DR: Single-molecule fluorescence resonance energy transfer (smFRET) is used to study coupled binding and folding processes in the ternary E1A system and revealed that E1 a–CBP–pRb interactions have either positive or negative cooperativity, depending on the available E1a interaction sites.
Abstract: Allostery is an intrinsic property of many globular proteins and enzymes that is indispensable for cellular regulatory and feedback mechanisms. Recent theoretical and empirical observations indicate that allostery is also manifest in intrinsically disordered proteins, which account for a substantial proportion of the proteome. Many intrinsically disordered proteins are promiscuous binders that interact with multiple partners and frequently function as molecular hubs in protein interaction networks. The adenovirus early region 1A (E1A) oncoprotein is a prime example of a molecular hub intrinsically disordered protein. E1A can induce marked epigenetic reprogramming of the cell within hours after infection, through interactions with a diverse set of partners that include key host regulators such as the general transcriptional coactivator CREB binding protein (CBP), its paralogue p300, and the retinoblastoma protein (pRb; also called RB1). Little is known about the allosteric effects at play in E1A-CBP-pRb interactions, or more generally in hub intrinsically disordered protein interaction networks. Here we used single-molecule fluorescence resonance energy transfer (smFRET) to study coupled binding and folding processes in the ternary E1A system. The low concentrations used in these high-sensitivity experiments proved to be essential for these studies, which are challenging owing to a combination of E1A aggregation propensity and high-affinity binding interactions. Our data revealed that E1A-CBP-pRb interactions have either positive or negative cooperativity, depending on the available E1A interaction sites. This striking cooperativity switch enables fine-tuning of the thermodynamic accessibility of the ternary versus binary E1A complexes, and may permit a context-specific tuning of associated downstream signalling outputs. Such a modulation of allosteric interactions is probably a common mechanism in molecular hub intrinsically disordered protein function.

279 citations

Journal ArticleDOI
TL;DR: Multisite phosphorylation thus acts as a rheostat to enhance binding to CBP/p300 and provides a plausible mechanistic explanation for the gradually increasing p53 response observed following prolonged or severe genotoxic stress.
Abstract: The transcriptional activity of p53 is regulated by a cascade of posttranslational modifications. Although acetylation of p53 by CREB-binding protein (CBP)/p300 is known to be indispensable for p53 activation, the role of phosphorylation, and in particular multisite phosphorylation, in activation of CBP/p300-dependent p53 transcriptional pathways remains unclear. We investigated the role of single site and multiple site phosphorylation of the p53 transactivation domain in mediating its interaction with CBP and with the ubiquitin ligase HDM2. Phosphorylation at Thr18 functions as an on/off switch to regulate binding to the N-terminal domain of HDM2. In contrast, binding to CBP is modulated by the extent of p53 phosphorylation; addition of successive phosphoryl groups enhances the affinity for the TAZ1, TAZ2, and KIX domains of CBP in an additive manner. Activation of p53-dependent transcriptional pathways requires that p53 compete with numerous cellular transcription factors for binding to limiting amounts of CBP/p300. Multisite phosphorylation represents a mechanism for a graded p53 response, with each successive phosphorylation event resulting in increasingly efficient recruitment of CBP/p300 to p53-regulated transcriptional programs, in the face of competition from cellular transcription factors. Multisite phosphorylation thus acts as a rheostat to enhance binding to CBP/p300 and provides a plausible mechanistic explanation for the gradually increasing p53 response observed following prolonged or severe genotoxic stress.

200 citations

Journal ArticleDOI
TL;DR: A reversible reaction-based fluorescent probe—designated as RealThiol (RT)—that can quantitatively monitor the real-time glutathione dynamics in living cells is reported, observing enhanced antioxidant capability of activated neurons and dynamic glutATHione changes during ferroptosis.
Abstract: Glutathione plays many important roles in biological processes; however, the dynamic changes of glutathione concentrations in living cells remain largely unknown. Here, we report a reversible reaction-based fluorescent probe-designated as RealThiol (RT)-that can quantitatively monitor the real-time glutathione dynamics in living cells. Using RT, we observe enhanced antioxidant capability of activated neurons and dynamic glutathione changes during ferroptosis. RT is thus a versatile tool that can be used for both confocal microscopy and flow cytometry based high-throughput quantification of glutathione levels in single cells. We envision that this new glutathione probe will enable opportunities to study glutathione dynamics and transportation and expand our understanding of the physiological and pathological roles of glutathione in living cells.

186 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations

Journal ArticleDOI
TL;DR: This review presents current knowledge on pathogen recognition through different families of PRRs and the increasingly complex signaling pathways responsible for activation of an inflammatory and antimicrobial response and medical implications are discussed.
Abstract: Summary: The innate immune system constitutes the first line of defense against invading microbial pathogens and relies on a large family of pattern recognition receptors (PRRs), which detect distinct evolutionarily conserved structures on pathogens, termed pathogen-associated molecular patterns (PAMPs). Among the PRRs, the Toll-like receptors have been studied most extensively. Upon PAMP engagement, PRRs trigger intracellular signaling cascades ultimately culminating in the expression of a variety of proinflammatory molecules, which together orchestrate the early host response to infection, and also is a prerequisite for the subsequent activation and shaping of adaptive immunity. In order to avoid immunopathology, this system is tightly regulated by a number of endogenous molecules that limit the magnitude and duration of the inflammatory response. Moreover, pathogenic microbes have developed sophisticated molecular strategies to subvert host defenses by interfering with molecules involved in inflammatory signaling. This review presents current knowledge on pathogen recognition through different families of PRRs and the increasingly complex signaling pathways responsible for activation of an inflammatory and antimicrobial response. Moreover, medical implications are discussed, including the role of PRRs in primary immunodeficiencies and in the pathogenesis of infectious and autoimmune diseases, as well as the possibilities for translation into clinical and therapeutic applications.

2,565 citations

Journal ArticleDOI
TL;DR: The function of the fifth adaptor, SARM, has been revealed, which negatively regulates TRIF, and it is shown that it acts as a bridging adaptor in the initiation of TLR signalling.
Abstract: Signalling by Toll-like receptors (TLRs) involves five adaptor proteins known as MyD88, MAL, TRIF, TRAM and SARM. Recent insights have revealed additional functions for MyD88 apart from NF-kappaB activation, including activation of the transcription factors IRF1, IRF5 and IRF7, and also a role outside the TLRs in interferon-gamma signalling. Biochemical information on MAL and TRAM has shown that both act as bridging adaptors, with MAL recruiting MyD88 to TLR2 and TLR4, and TRAM recruiting TRIF to TLR4 to allow for IRF3 activation. Finally, the function of the fifth adaptor, SARM, has been revealed, which negatively regulates TRIF. These new insights allow for a detailed description of the function of the five TIR-domain-containing adaptors in the initiation of TLR signalling.

2,474 citations

Journal ArticleDOI
20 Oct 2005-Nature
TL;DR: Cardif is described, a new CARD-containing adaptor protein that interacts with RIG-I and recruits IKKα, IKKβ and IKKɛ kinases by means of its C-terminal region, leading to the activation of NF-κB and IRF3.
Abstract: Antiviral immunity against a pathogen is mounted upon recognition by the host of virally associated structures. One of these viral 'signatures', double-stranded (ds) RNA, is a replication product of most viruses within infected cells and is sensed by Toll-like receptor 3 (TLR3) and the recently identified cytosolic RNA helicases RIG-I (retinoic acid inducible gene I, also known as Ddx58) and Mda5 (melanoma differentiation-associated gene 5, also known as Ifih1 or Helicard). Both helicases detect dsRNA, and through their protein-interacting CARD domains, relay an undefined signal resulting in the activation of the transcription factors interferon regulatory factor 3 (IRF3) and NF-kappaB. Here we describe Cardif, a new CARD-containing adaptor protein that interacts with RIG-I and recruits IKKalpha, IKKbeta and IKKvarepsilon kinases by means of its C-terminal region, leading to the activation of NF-kappaB and IRF3. Overexpression of Cardif results in interferon-beta and NF-kappaB promoter activation, and knockdown of Cardif by short interfering RNA inhibits RIG-I-dependent antiviral responses. Cardif is targeted and inactivated by NS3-4A, a serine protease from hepatitis C virus known to block interferon-beta production. Cardif thus functions as an adaptor, linking the cytoplasmic dsRNA receptor RIG-I to the initiation of antiviral programmes.

2,328 citations