scispace - formally typeset
Search or ask a question
Author

Allan Hanbury

Bio: Allan Hanbury is an academic researcher from Vienna University of Technology. The author has contributed to research in topics: Image segmentation & Image retrieval. The author has an hindex of 39, co-authored 303 publications receiving 6859 citations. Previous affiliations of Allan Hanbury include Information Retrieval Facility & Association for Computing Machinery.


Papers
More filters
Journal ArticleDOI
TL;DR: An efficient evaluation tool for 3D medical image segmentation is proposed using 20 evaluation metrics based on a comprehensive literature review and guidelines for selecting a subset of these metrics that is suitable for the data and the segmentation task are provided.
Abstract: Medical Image segmentation is an important image processing step. Comparing images to evaluate the quality of segmentation is an essential part of measuring progress in this research area. Some of the challenges in evaluating medical segmentation are: metric selection, the use in the literature of multiple definitions for certain metrics, inefficiency of the metric calculation implementations leading to difficulties with large volumes, and lack of support for fuzzy segmentation by existing metrics. First we present an overview of 20 evaluation metrics selected based on a comprehensive literature review. For fuzzy segmentation, which shows the level of membership of each voxel to multiple classes, fuzzy definitions of all metrics are provided. We present a discussion about metric properties to provide a guide for selecting evaluation metrics. Finally, we propose an efficient evaluation tool implementing the 20 selected metrics. The tool is optimized to perform efficiently in terms of speed and required memory, also if the image size is extremely large as in the case of whole body MRI or CT volume segmentation. An implementation of this tool is available as an open source project. We propose an efficient evaluation tool for 3D medical image segmentation using 20 evaluation metrics and provide guidelines for selecting a subset of these metrics that is suitable for the data and the segmentation task.

1,561 citations

Proceedings ArticleDOI
25 Oct 2010
TL;DR: This work investigates and develops methods to extract and combine low-level features that represent the emotional content of an image, and uses these for image emotion classification.
Abstract: Images can affect people on an emotional level. Since the emotions that arise in the viewer of an image are highly subjective, they are rarely indexed. However there are situations when it would be helpful if images could be retrieved based on their emotional content. We investigate and develop methods to extract and combine low-level features that represent the emotional content of an image, and use these for image emotion classification. Specifically, we exploit theoretical and empirical concepts from psychology and art theory to extract image features that are specific to the domain of artworks with emotional expression. For testing and training, we use three data sets: the International Affective Picture System (IAPS); a set of artistic photography from a photo sharing site (to investigate whether the conscious use of colors and textures displayed by the artists improves the classification); and a set of peer rated abstract paintings to investigate the influence of the features and ratings on pictures without contextual content. Improved classification results are obtained on the International Affective Picture System (IAPS), compared to state of the art work.

734 citations

Journal ArticleDOI
TL;DR: A novel efficient algorithm for computing the exact Hausdorff distance that has efficient performance for large point set sizes as well as for large grid size; performs equally for sparse and dense point sets; and is general without restrictions on the characteristics of the point set.
Abstract: The Hausdorff distance (HD) between two point sets is a commonly used dissimilarity measure for comparing point sets and image segmentations. Especially when very large point sets are compared using the HD, for example when evaluating magnetic resonance volume segmentations, or when the underlying applications are based on time critical tasks, like motion detection, then the computational complexity of HD algorithms becomes an important issue. In this paper we propose a novel efficient algorithm for computing the exact Hausdorff distance. In a runtime analysis, the proposed algorithm is demonstrated to have nearly-linear complexity. Furthermore, it has efficient performance for large point set sizes as well as for large grid size; performs equally for sparse and dense point sets; and finally it is general without restrictions on the characteristics of the point set. The proposed algorithm is tested against the HD algorithm of the widely used national library of medicine insight segmentation and registration toolkit (ITK) using magnetic resonance volumes with extremely large size. The proposed algorithm outperforms the ITK HD algorithm both in speed and memory required. In an experiment using trajectories from a road network, the proposed algorithm significantly outperforms an HD algorithm based on R-Trees.

238 citations

Journal ArticleDOI
TL;DR: Clinicians, researchers, and citizens need improved methods, tools, and training to generate, analyze, and query data effectively and contribute to creating the European Single Market for health, which will improve health and healthcare for all Europeans.
Abstract: Medicine and healthcare are undergoing profound changes. Whole-genome sequencing and high-resolution imaging technologies are key drivers of this rapid and crucial transformation. Technological innovation combined with automation and miniaturization has triggered an explosion in data production that will soon reach exabyte proportions. How are we going to deal with this exponential increase in data production? The potential of “big data” for improving health is enormous but, at the same time, we face a wide range of challenges to overcome urgently. Europe is very proud of its cultural diversity; however, exploitation of the data made available through advances in genomic medicine, imaging, and a wide range of mobile health applications or connected devices is hampered by numerous historical, technical, legal, and political barriers. European health systems and databases are diverse and fragmented. There is a lack of harmonization of data formats, processing, analysis, and data transfer, which leads to incompatibilities and lost opportunities. Legal frameworks for data sharing are evolving. Clinicians, researchers, and citizens need improved methods, tools, and training to generate, analyze, and query data effectively. Addressing these barriers will contribute to creating the European Single Market for health, which will improve health and healthcare for all Europeans.

211 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive analysis of biomedical image analysis challenges conducted up to now and demonstrate the importance of challenges and show that the lack of quality control has critical consequences.
Abstract: International challenges have become the standard for validation of biomedical image analysis methods. Given their scientific impact, it is surprising that a critical analysis of common practices related to the organization of challenges has not yet been performed. In this paper, we present a comprehensive analysis of biomedical image analysis challenges conducted up to now. We demonstrate the importance of challenges and show that the lack of quality control has critical consequences. First, reproducibility and interpretation of the results is often hampered as only a fraction of relevant information is typically provided. Second, the rank of an algorithm is generally not robust to a number of variables such as the test data used for validation, the ranking scheme applied and the observers that make the reference annotations. To overcome these problems, we recommend best practice guidelines and define open research questions to be addressed in the future.

203 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Journal ArticleDOI
TL;DR: The state-of-the-art in evaluated methods for both classification and detection are reviewed, whether the methods are statistically different, what they are learning from the images, and what the methods find easy or confuse.
Abstract: The Pascal Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection. This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension.

15,935 citations

Journal ArticleDOI
TL;DR: The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) as mentioned in this paper was organized in conjunction with the MICCAI 2012 and 2013 conferences, and twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low and high grade glioma patients.
Abstract: In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource

3,699 citations

Journal ArticleDOI
01 Jun 1959

3,442 citations

01 Jan 2006

3,012 citations