scispace - formally typeset
Search or ask a question
Author

Allan M. Jordan

Bio: Allan M. Jordan is an academic researcher from University of Manchester. The author has contributed to research in topics: PARG & Poly(ADP-ribose) glycohydrolase. The author has an hindex of 30, co-authored 91 publications receiving 5072 citations. Previous affiliations of Allan M. Jordan include Institute of Cancer Research & University of Reading.


Papers
More filters
Journal ArticleDOI
TL;DR: The reaction types used in the pursuit of novel drug candidates are analyzed to evaluate their frequency of occurrence, alongside other factors such as drug likeness, chirality, and the number of steps to each derivative.
Abstract: The Medicinal Chemist’s Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates

1,712 citations

Journal ArticleDOI
TL;DR: This review describes the biochemistry of tubulin, microtubules, and the mitotic spindle and describes the natural and synthetic agents which are known to interact with tubulin.
Abstract: Tubulin is the biochemical target for several clinically used anticancer drugs, including paclitaxel and the vinca alkaloids vincristine and vinblastine. This review describes both the natural and synthetic agents which are known to interact with tubulin. Syntheses of the more complex agents are referenced and the potential clinical use of the compounds is discussed. This review describes the biochemistry of tubulin, microtubules, and the mitotic spindle. The agents are discussed in relation to the type of binding site on the protein with which they interact. These are the colchicine, vinca alkaloid, rhizoxin/maytansine, and tubulin sulfhydryl binding sites. Also included are the agents which either bind at other sites or unknown sites on tubulin. The literature is reviewed up to October 1997. © 1998 John Wiley & Sons, Inc., Med Res Rev, 18, No. 4, 259–296, 1998.

624 citations

Journal ArticleDOI
TL;DR: The data establish KDM1A as a key effector of the differentiation block in MLL leukemia, which may be selectively targeted to therapeutic effect, and drugs active in the nanomolar range phenocopied Kdm1a knockdown in both murine and primary human AML cells exhibiting MLL translocations are established.

510 citations

Journal ArticleDOI
TL;DR: The structure-based design, synthesis, structure-activity relationships and pharmacokinetics of potent small-molecule inhibitors of Hsp90 based on the 4,5-diarylisoxazole scaffold are described and analogues from this series have high affinity for HSp90, as measured in a fluorescence polarization (FP) competitive binding assay, and are active in cancer cell lines.
Abstract: Inhibitors of the Hsp90 molecular chaperone are showing considerable promise as potential chemotherapeutic agents for cancer. Here, we describe the structure-based design, synthesis, structure-activity relationships and pharmacokinetics of potent small-molecule inhibitors of Hsp90 based on the 4,5-diarylisoxazole scaffold. Analogues from this series have high affinity for Hsp90, as measured in a fluorescence polarization (FP) competitive binding assay, and are active in cancer cell lines where they inhibit proliferation and exhibit a characteristic profile of depletion of oncogenic proteins and concomitant elevation of Hsp72. Compound 40f (VER-52296/NVP-AUY922) is potent in the Hsp90 FP binding assay (IC50 = 21 nM) and inhibits proliferation of various human cancer cell lines in vitro, with GI(50) averaging 9 nM. Compound 40f is retained in tumors in vivo when administered i.p., as evaluated by cassette dosing in tumor-bearing mice. In a human colon cancer xenograft model, 40f inhibits tumor growth by similar to 50%.

432 citations

Journal ArticleDOI
TL;DR: Data from TARGET support the application of ctDNA in this early phase trial setting where broad genomic profiling of contemporaneous tumor material enhances patient stratification to novel therapies and provides a practical template for bringing routinely applied blood-based analyses to the clinic.
Abstract: Next-generation sequencing (NGS) of circulating tumor DNA (ctDNA) supports blood-based genomic profiling but is not yet routinely implemented in the setting of a phase I trials clinic. TARGET is a molecular profiling program with the primary aim to match patients with a broad range of advanced cancers to early phase clinical trials on the basis of analysis of both somatic mutations and copy number alterations (CNA) across a 641 cancer-associated-gene panel in a single ctDNA assay. For the first 100 TARGET patients, ctDNA data showed good concordance with matched tumor and results were turned round within a clinically acceptable timeframe for Molecular Tumor Board (MTB) review. When a 2.5% variant allele frequency (VAF) threshold was applied, actionable mutations were identified in 41 of 100 patients, and 11 of these patients received a matched therapy. These data support the application of ctDNA in this early phase trial setting where broad genomic profiling of contemporaneous tumor material enhances patient stratification to novel therapies and provides a practical template for bringing routinely applied blood-based analyses to the clinic.

185 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A graphical system for automatically generating multiple 2D diagrams of ligand-protein interactions from 3D coordinates that facilitates popular research tasks, such as analyzing a series of small molecules binding to the same protein target, a single ligand binding to homologous proteins, or the completely general case where both protein and ligand change.
Abstract: We describe a graphical system for automatically generating multiple 2D diagrams of ligand–protein interactions from 3D coordinates. The diagrams portray the hydrogen-bond interaction patterns and hydrophobic contacts between the ligand(s) and the main-chain or side-chain elements of the protein. The system is able to plot, in the same orientation, related sets of ligand–protein interactions. This facilitates popular research tasks, such as analyzing a series of small molecules binding to the same protein target, a single ligand binding to homologous proteins, or the completely general case where both protein and ligand change.

3,840 citations

01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

Journal ArticleDOI
TL;DR: The reaction types used in the pursuit of novel drug candidates are analyzed to evaluate their frequency of occurrence, alongside other factors such as drug likeness, chirality, and the number of steps to each derivative.
Abstract: The Medicinal Chemist’s Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates

1,712 citations

Journal ArticleDOI
TL;DR: An overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present is provided.
Abstract: Pd-catalyzed cross-coupling reactions that form C–N bonds have become useful methods to synthesize anilines and aniline derivatives, an important class of compounds throughout chemical research. A key factor in the widespread adoption of these methods has been the continued development of reliable and versatile catalysts that function under operationally simple, user-friendly conditions. This review provides an overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present. Selected examples of C–N cross-coupling reactions between nine classes of nitrogen-based coupling partners and (pseudo)aryl halides are described for the synthesis of heterocycles, medicinally relevant compounds, natural products, organic materials, and catalysts.

1,709 citations

Journal ArticleDOI
TL;DR: New developments in the cancer stem cell field are discussed in relationship to changing insights into how normal stem cells maintain healthy tissues and the first successes of therapies based on the CSC concept are emerging.
Abstract: The cancer stem cell (CSC) concept was proposed four decades ago, and states that tumor growth, analogous to the renewal of healthy tissues, is fueled by small numbers of dedicated stem cells. It has gradually become clear that many tumors harbor CSCs in dedicated niches, and yet their identification and eradication has not been as obvious as was initially hoped. Recently developed lineage-tracing and cell-ablation strategies have provided insights into CSC plasticity, quiescence, renewal, and therapeutic response. Here we discuss new developments in the CSC field in relationship to changing insights into how normal stem cells maintain healthy tissues. Expectations in the field have become more realistic, and now, the first successes of therapies based on the CSC concept are emerging.

1,686 citations