scispace - formally typeset
Search or ask a question
Author

Allan R. Oseroff

Bio: Allan R. Oseroff is an academic researcher from Roswell Park Cancer Institute. The author has contributed to research in topics: Photosensitizer & Photodynamic therapy. The author has an hindex of 48, co-authored 121 publications receiving 7029 citations. Previous affiliations of Allan R. Oseroff include University of Rajasthan & Harvard University.


Papers
More filters
Journal ArticleDOI
TL;DR: The potential of using ceramic-based nanoparticles as drug carriers for photodynamic therapy has been demonstrated and the active uptake of drug-doped nanoparticles into the cytosol of tumor cells is demonstrated.
Abstract: A novel nanoparticle-based drug carrier for photodynamic therapy is reported which can provide stable aqueous dispersion of hydrophobic photosensitizers, yet preserve the key step of photogeneration of singlet oxygen, necessary for photodynamic action. A multidisciplinary approach is utilized which involves (i) nanochemistry in micellar cavity to produce these carriers, (ii) spectroscopy to confirm singlet oxygen production, and (iii) in vitro studies using tumor cells to investigate drug-carrier uptake and destruction of cancer cells by photodynamic action. Ultrafine organically modified silica-based nanoparticles (diameter approximately 30 nm), entrapping water-insoluble photosensitizing anticancer drug 2-devinyl-2-(1-hexyloxyethyl) pyropheophorbide, have been synthesized in the nonpolar core of micelles by hydrolysis of triethoxyvinylsilane. The resulting drug-doped nanoparticles are spherical, highly monodispersed, and stable in aqueous system. The entrapped drug is more fluorescent in aqueous medium than the free drug, permitting use of fluorescence bioimaging studies. Irradiation of the photosensitizing drug entrapped in nanoparticles with light of suitable wavelength results in efficient generation of singlet oxygen, which is made possible by the inherent porosity of the nanoparticles. In vitro studies have demonstrated the active uptake of drug-doped nanoparticles into the cytosol of tumor cells. Significant damage to such impregnated tumor cells was observed upon irradiation with light of wavelength 650 nm. Thus, the potential of using ceramic-based nanoparticles as drug carriers for photodynamic therapy has been demonstrated.

902 citations

Journal ArticleDOI
TL;DR: A novel nanoformulation of a photosensitizer (PS), for photodynamic therapy (PDT) of cancer, where the PS molecules are covalently incorporated into organically modified silica (ORMOSIL) nanoparticles, which retained their spectroscopic and functional properties and could robustly generate cytotoxic singlet oxygen molecules upon photoirradiation.
Abstract: We report a novel nanoformulation of a photosensitizer (PS), for photodynamic therapy (PDT) of cancer, where the PS molecules are covalently incorporated into organically modified silica (ORMOSIL) nanoparticles. We found that the covalently incorporated PS molecules retained their spectroscopic and functional properties and could robustly generate cytotoxic singlet oxygen molecules upon photoirradiation. The synthesized nanoparticles are of ultralow size (∼20 nm) and are highly monodispersed and stable in aqueous suspension. The advantage offered by this covalently linked nanofabrication is that the drug is not released during systemic circulation, which is often a problem with physical encapsulation. These nanoparticles are also avidly uptaken by tumor cells in vitro and demonstrate phototoxic action, thereby highlighting their potential in diagnosis and PDT of cancer.

313 citations

Journal ArticleDOI
TL;DR: The subcellular localization of many photosensitizers and the early responses to light activation indicate that mitochondria play a major role in photodynamic cell death.

267 citations

Journal Article
TL;DR: It is reported that standard clinical treatment conditions, which are highly effective for treating human basal cell carcinomas, significantly diminished tumor oxygen levels during initial light delivery, and initial light Delivery at a lower fluence rate increased tumor oxygenation in a majority of carcinomas.
Abstract: At high fluence rates in animal models, photodynamic therapy (PDT) can photochemically deplete ambient tumor oxygen through the generation of singlet oxygen, causing acute hypoxia and limiting treatment effectiveness. We report that standard clinical treatment conditions (1 mg/kg Photofrin, light at 630 nm and 150 mW/cm2), which are highly effective for treating human basal cell carcinomas, significantly diminished tumor oxygen levels during initial light delivery in a majority of carcinomas. Oxygen depletion could be found during at least 40% of the total light dose, but tumors appeared well oxygenated toward the end of treatment. In contrast, initial light delivery at a lower fluence rate of 30 mW/cm2 increased tumor oxygenation in a majority of carcinomas. Laser treatment caused an intensity- and treatment time-dependent increase in tumor temperature. The data suggest that high fluence rate treatment, although effective, may be inefficient.

250 citations

Journal ArticleDOI
TL;DR: Optical ranging using femtosecond laser pulses and nonlinear-optical cross correlation is demonstrated for the investigation of the microstructure of biological systems and the epidermal structure of human skin in vitro.
Abstract: Optical ranging using femtosecond laser pulses and nonlinear-optical cross correlation is demonstrated for the investigation of the microstructure of biological systems. By using pulses of 65-fsec duration generated by a colliding-pulse mode-locked ring dye laser, a spatial resolution of less than 15 μm is achieved with a detection sensitivity to remitted signals as small as 10−7 of the incident pulse energy. This technique is applied to measure the cornea in rabbit eyes in vivo as well as to investigate the epidermal structure of human skin in vitro.

211 citations


Cited by
More filters
Journal ArticleDOI
22 Nov 1991-Science
TL;DR: OCT as discussed by the authors uses low-coherence interferometry to produce a two-dimensional image of optical scattering from internal tissue microstructures in a way analogous to ultrasonic pulse-echo imaging.
Abstract: A technique called optical coherence tomography (OCT) has been developed for noninvasive cross-sectional imaging in biological systems. OCT uses low-coherence interferometry to produce a two-dimensional image of optical scattering from internal tissue microstructures in a way that is analogous to ultrasonic pulse-echo imaging. OCT has longitudinal and lateral spatial resolutions of a few micrometers and can detect reflected signals as small as approximately 10(-10) of the incident optical power. Tomographic imaging is demonstrated in vitro in the peripapillary area of the retina and in the coronary artery, two clinically relevant examples that are representative of transparent and turbid media, respectively.

11,568 citations

Book ChapterDOI
16 Nov 1992
TL;DR: Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease as mentioned in this paper, where OCT is an interferometric technique that detects reflected and backscattered light from tissue.
Abstract: Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described as the optical analogue to ultrasound. The inherent safety of the technology allows for in vivo use of OCT in patients. The main strength of OCT is the depth resolution. In dermatology, most OCT research has turned on non-melanoma skin cancer (NMSC) and non-invasive monitoring of morphological changes in a number of skin diseases based on pattern recognition, and studies have found good agreement between OCT images and histopathological architecture. OCT has shown high accuracy in distinguishing lesions from normal skin, which is of great importance in identifying tumour borders or residual neoplastic tissue after therapy. The OCT images provide an advantageous combination of resolution and penetration depth, but specific studies of diagnostic sensitivity and specificity in dermatology are sparse. In order to improve OCT image quality and expand the potential of OCT, technical developments are necessary. It is suggested that the technology will be of particular interest to the routine follow-up of patients undergoing non-invasive therapy of malignant or premalignant keratinocyte tumours. It is speculated that the continued technological development can propel the method to a greater level of dermatological use.

6,095 citations

Book
01 May 1988
TL;DR: A comprehensive review of mechanisms of subcellular and tumor localization of photosensitizing agents, as well as of molecular, cellular, and tumor responses associated with photodynamic therapy, are discussed.
Abstract: Photodynamic therapy involves administration of a tumor-localizing photosensitizing agent, which may require metabolic synthesis (i.e., a prodrug), followed by activation of the agent by light of a specific wavelength. This therapy results in a sequence of photochemical and photobiologic processes that cause irreversible photodamage to tumor tissues. Results from preclinical and clinical studies conducted worldwide over a 25-year period have established photodynamic therapy as a useful treatment approach for some cancers. Since 1993, regulatory approval for photodynamic therapy involving use of a partially purified, commercially available hematoporphyrin derivative compound (Photofrin) in patients with early and advanced stage cancer of the lung, digestive tract, and genitourinary tract has been obtained in Canada, The Netherlands, France, Germany, Japan, and the United States. We have attempted to conduct and present a comprehensive review of this rapidly expanding field. Mechanisms of subcellular and tumor localization of photosensitizing agents, as well as of molecular, cellular, and tumor responses associated with photodynamic therapy, are discussed. Technical issues regarding light dosimetry are also considered.

4,580 citations

Journal ArticleDOI
TL;DR: Nanotechnology is a multidisciplinary field, which covers a vast and diverse array of devices derived from engineering, biology, physics and chemistry that can provide essential breakthroughs in the fight against cancer.
Abstract: Nanotechnology is a multidisciplinary field, which covers a vast and diverse array of devices derived from engineering, biology, physics and chemistry. These devices include nanovectors for the targeted delivery of anticancer drugs and imaging contrast agents. Nanowires and nanocantilever arrays are among the leading approaches under development for the early detection of precancerous and malignant lesions from biological fluids. These and other nanodevices can provide essential breakthroughs in the fight against cancer.

4,241 citations

Journal ArticleDOI
TL;DR: The photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells as discussed by the authors, which can prolong survival in patients with inoperable cancers and significantly improve quality of life.
Abstract: Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells. The procedure involves administration of a photosensitizing agent followed by irradiation at a wavelength corresponding to an absorbance band of the sensitizer. In the presence of oxygen, a series of events lead to direct tumor cell death, damage to the microvasculature, and induction of a local inflammatory reaction. Clinical studies revealed that PDT can be curative, particularly in early stage tumors. It can prolong survival in patients with inoperable cancers and significantly improve quality of life. Minimal normal tissue toxicity, negligible systemic effects, greatly reduced long-term morbidity, lack of intrinsic or acquired resistance mechanisms, and excellent cosmetic as well as organ function-sparing effects of this treatment make it a valuable therapeutic option for combination treatments. With a number of recent technological improvements, PDT has the potential to become integrated into the mainstream of cancer treatment. CA Cancer J Clin 2011;61:250-281. V C

3,770 citations