scispace - formally typeset
Search or ask a question
Author

Allen E. Eckhardt

Other affiliations: Duke University, Illumina, University of Michigan  ...read more
Bio: Allen E. Eckhardt is an academic researcher from Research Triangle Park. The author has contributed to research in topics: Digital microfluidics & Mucin. The author has an hindex of 46, co-authored 90 publications receiving 5308 citations. Previous affiliations of Allen E. Eckhardt include Duke University & Illumina.


Papers
More filters
Journal ArticleDOI
TL;DR: The performance of magnetic bead-based immunoassays (cardiac troponin I) on a digital microfluidic cartridge in less than 8 minutes using whole blood samples and the capability to perform sample preparation for bacterial infectious disease pathogen, methicillin-resistant Staphylococcus aureus and for human genomic DNA using magnetic beads are demonstrated.
Abstract: Point of care testing is playing an increasingly important role in improving the clinical outcome in health care management. The salient features of a point of care device are rapid results, integrated sample preparation and processing, small sample volumes, portability, multifunctionality and low cost. In this paper, we demonstrate some of these salient features utilizing an electrowetting-based Digital Microfluidic platform. We demonstrate the performance of magnetic bead-based immunoassays (cardiac troponin I) on a digital microfluidic cartridge in less than 8 minutes using whole blood samples. Using the same microfluidic cartridge, a 40-cycle real-time polymerase chain reaction was performed within 12 minutes by shuttling a droplet between two thermal zones. We further demonstrate, on the same cartridge, the capability to perform sample preparation for bacterial infectious disease pathogen, methicillin-resistant Staphylococcus aureus and for human genomic DNA using magnetic beads. In addition to rapid results and integrated sample preparation, electrowetting-based digital microfluidic instruments are highly portable because fluid pumping is performed electronically. All the digital microfluidic chips presented here were fabricated on printed circuit boards utilizing mass production techniques that keep the cost of the chip low. Due to the modularity and scalability afforded by digital microfluidics, multifunctional testing capability, such as combinations within and between immunoassays, DNA amplification, and enzymatic assays, can be brought to the point of care at a relatively low cost because a single chip can be configured in software for different assays required along the path of care.

559 citations

Journal ArticleDOI
TL;DR: It is concluded that PTH stimulates ERK1/2 through several distinct signal transduction pathways: an early G protein-dependent pathway meditated by PKA and PKC and a late pathway independent of G proteins mediated through β-arrestins.

458 citations

Journal ArticleDOI
TL;DR: A digital microfluidic platform for performing heterogeneous sandwich immunoassays based on efficient handling of magnetic beads is presented in this paper, based on manipulation of discrete droplets of samples and reagents using electrowetting without the need for channels where the droplets are free to move laterally.
Abstract: A digital microfluidic platform for performing heterogeneous sandwich immunoassays based on efficient handling of magnetic beads is presented in this paper. This approach is based on manipulation of discrete droplets of samples and reagents using electrowetting without the need for channels where the droplets are free to move laterally. Droplet-based manipulation of magnetic beads therefore does not suffer from clogging of channels. Immunoassays on a digital microfluidic platform require the following basic operations: bead attraction, bead washing, bead retention, and bead resuspension. Several parameters such as magnetic field strength, pull force, position, and buffer composition were studied for effective bead operations. Dilution-based washing of magnetic beads was demonstrated by immobilizing the magnetic beads using a permanent magnet and splitting the excess supernatant using electrowetting. Almost 100% bead retention was achieved after 7776-fold dilution-based washing of the supernatant. Efficient resuspension of magnetic beads was achieved by transporting a droplet with magnetic beads across five electrodes on the platform and exploiting the flow patterns within the droplet to resuspend the beads. All the magnetic-bead droplet operations were integrated together to generate standard curves for sandwich heterogeneous immunoassays on human insulin and interleukin-6 (IL-6) with a total time to result of 7 min for each assay.

347 citations

Journal ArticleDOI
TL;DR: A versatile digital microfluidic platform for multiplexed real-time polymerase chain reactions (PCR) that reliably detected diagnostic DNA levels of methicillin-resistant Staphylococcus aureus, Mycoplasma pneumoniae, and Candida albicans and was consistently repeatable across multiple PCR loops both within and between cartridges.
Abstract: This paper details the development of a digital microfluidic platform for multiplexed real-time polymerase chain reactions (PCR). Liquid samples in discrete droplet format are programmably manipulated upon an electrode array by the use of electrowetting. Rapid PCR thermocycling is performed in a closed-loop flow-through format where for each cycle the reaction droplets are cyclically transported between different temperature zones within an oil-filled cartridge. The cartridge is fabricated using low-cost printed-circuit-board technology and is intended to be a single-use disposable device. The PCR system exhibited remarkable amplification efficiency of 94.7%. To test its potential application in infectious diseases, this novel PCR system reliably detected diagnostic DNA levels of methicillin-resistant Staphylococcus aureus (MRSA), Mycoplasma pneumoniae, and Candida albicans. Amplification of genomic DNA samples was consistently repeatable across multiple PCR loops both within and between cartridges. In ad...

268 citations

Patent
10 Nov 2009
TL;DR: In this article, a method of splitting a droplet is provided, the method including providing a droplets microactuator including a single droplet including one or more beads and immobilizing at least one of the beads.
Abstract: The present invention relates to droplet-based surface modification and washing. According to one embodiment, a method of splitting a droplet is provided, the method including providing a droplet microactuator including a droplet including one or more beads and immobilizing at least one of the one or more beads. The method further includes conducting one or more droplet operations to divide the droplet to yield a set of droplets including a droplet including the one or more immobilized beads and a droplet substantially lacking the one or more immobilized beads.

177 citations


Cited by
More filters
01 May 2005

2,648 citations

Journal ArticleDOI
TL;DR: IDSA considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances.
Abstract: It is important to realize that guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. IDSA considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances.

2,367 citations

Journal ArticleDOI
TL;DR: The roles of glycans are highlighted by the fact that alterations in glycosylation regulate the development and progression of cancer, serving as important biomarkers and providing a set of specific targets for therapeutic intervention.
Abstract: Despite recent progress in understanding the cancer genome, there is still a relative delay in understanding the full aspects of the glycome and glycoproteome of cancer. Glycobiology has been instrumental in relevant discoveries in various biological and medical fields, and has contributed to the deciphering of several human diseases. Glycans are involved in fundamental molecular and cell biology processes occurring in cancer, such as cell signalling and communication, tumour cell dissociation and invasion, cell-matrix interactions, tumour angiogenesis, immune modulation and metastasis formation. The roles of glycans in cancer have been highlighted by the fact that alterations in glycosylation regulate the development and progression of cancer, serving as important biomarkers and providing a set of specific targets for therapeutic intervention. This Review discusses the role of glycans in fundamental mechanisms controlling cancer development and progression, and their applications in oncology.

1,920 citations

Journal ArticleDOI
TL;DR: Mucins — large extracellular proteins that are heavily glycosylated with complex oligosaccharides — establish a selective molecular barrier at the epithelial surface and engage in morphogenetic signal transduction.
Abstract: Mucins — large extracellular proteins that are heavily glycosylated with complex oligosaccharides — establish a selective molecular barrier at the epithelial surface and engage in morphogenetic signal transduction. Alterations in mucin expression or glycosylation accompany the development of cancer and influence cellular growth, differentiation, transformation, adhesion, invasion and immune surveillance. Mucins are used as diagnostic markers in cancer, and are under investigation as therapeutic targets for cancer.

1,657 citations