scispace - formally typeset
Search or ask a question
Author

Allen L. Soyster

Bio: Allen L. Soyster is an academic researcher from Pennsylvania State University. The author has contributed to research in topics: Linear programming & Oligopoly. The author has an hindex of 15, co-authored 30 publications receiving 2604 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This note formulates a convex mathematical programming problem in which the usual definition of the feasible region is replaced by a significantly different strategy via set containment.
Abstract: This note formulates a convex mathematical programming problem in which the usual definition of the feasible region is replaced by a significantly different strategy. Instead of specifying the feasible region by a set of convex inequalities, fi(x) ≦ bi, i = 1, 2, …, m, the feasible region is defined via set containment. Here n convex activity sets {Kj, j = 1, 2, …, n} and a convex resource set K are specified and the feasible region is given by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$X =\{x \in R^{n}\mid x_{1}K_{1} + x_{2}K_{2} + \cdots + x_{n}K_{n} \subseteq K, x_{j}\geq 0\}$$ \end{document} where the binary operation + refers to addition of sets. The problem is then to find x ∈ X that maximizes the linear function c · x. When the res...

1,813 citations

Journal ArticleDOI
TL;DR: A rotor for exchangers in which the thermodynamic characteristics of two gas currents are transferred from one current to the other while they are being passed through the exchanger insert in zones separated from one another.
Abstract: The supply side of an oligopolistic market supplying a homogeneous product noncooperatively is modeled. In this market, there is one leader and N followers. The followers operate under the Cournot assumption of zero conjectural variation and are accordingly called Cournot firms. The leader, called a Stackelberg firm, specifically takes into account the reaction of the Cournot firms to its output. For this situation, we study the behavior and implications of the joint Cournot reaction curve as generated by plausible economic market assumptions. In particular, we study the existence and uniqueness of a Stackelberg-Nash-Cournot equilibrium. In addition, we prescribe an efficient algorithm to determine a set of equilibrating output quantities for the firms.

235 citations

Journal ArticleDOI
TL;DR: Solutions to this family of convex programs are shown to be Nash equilibria in the formal sense of N person games, which leads to a mathematical programming-based algorithm for determining an oligopolistic market equilibrium.
Abstract: During the past several years it has become increasingly common to use mathematical programming methods for deriving economic equilibria of supply and demand. Well-defined approaches exist for the case of a single firm (monopoly) and for the case of many firms (perfect competition). In this paper a certain family of convex programs is formulated to determine equilibria for the case of a few firms (oligopoly). Solutions to this family of convex programs are shown to be Nash equilibria in the formal sense ofN person games. This equivalence leads to a mathematical programming-based algorithm for determining an oligopolistic market equilibrium.

234 citations

Journal ArticleDOI
TL;DR: Alternative methods for constructing a 0–1 integer programming problem from a propositional calculus problem and the use of the resulting mathematical program to solve the related logic problem are discussed.

112 citations

Journal ArticleDOI
TL;DR: In this article, the role and impact of uncertainty in the forecast of electricity demand is discussed, and the emphasis is upon how uncertainty about future demand affects current choices and strategies of capacity expansion.
Abstract: This paper is concerned with the role and impact of uncertainty in the forecast of electricity demand. In particular, the emphasis is upon how uncertainty about future demand affects current choices and strategies of capacity expansion. The uncertainty in demand is incorporated into both a stochastic linear program with recourse and an ordinary linear program. In the latter case only the “expected value” of demand is considered. The main result of this paper is that under fairly general conditions an ordinary linear program provides the same optimal solution as the more complex stochastic linear program.

88 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors propose an approach that attempts to make this trade-off more attractive by flexibly adjusting the level of conservatism of the robust solutions in terms of probabilistic bounds of constraint violations.
Abstract: A robust approach to solving linear optimization problems with uncertain data was proposed in the early 1970s and has recently been extensively studied and extended. Under this approach, we are willing to accept a suboptimal solution for the nominal values of the data in order to ensure that the solution remains feasible and near optimal when the data changes. A concern with such an approach is that it might be too conservative. In this paper, we propose an approach that attempts to make this trade-off more attractive; that is, we investigate ways to decrease what we call the price of robustness. In particular, we flexibly adjust the level of conservatism of the robust solutions in terms of probabilistic bounds of constraint violations. An attractive aspect of our method is that the new robust formulation is also a linear optimization problem. Thus we naturally extend our methods to discrete optimization problems in a tractable way. We report numerical results for a portfolio optimization problem, a knapsack problem, and a problem from the Net Lib library.

3,364 citations

01 Jan 2004
TL;DR: An approach is proposed that flexibly adjust the level of conservatism of the robust solutions in terms of probabilistic bounds of constraint violations, and an attractive aspect of this method is that the new robust formulation is also a linear optimization problem, so it naturally extend to discrete optimization problems in a tractable way.
Abstract: A robust approach to solving linear optimization problems with uncertain data was proposed in the early 1970s and has recently been extensively studied and extended. Under this approach, we are willing to accept a suboptimal solution for the nominal values of the data in order to ensure that the solution remains feasible and near optimal when the data changes. A concern with such an approach is that it might be too conservative. In this paper, we propose an approach that attempts to make this trade-off more attractive; that is, we investigate ways to decrease what we call the price of robustness. In particular, we flexibly adjust the level of conservatism of the robust solutions in terms of probabilistic bounds of constraint violations. An attractive aspect of our method is that the new robust formulation is also a linear optimization problem. Thus we naturally extend our methods to discrete optimization problems in a tractable way. We report numerical results for a portfolio optimization problem, a knapsack problem, and a problem from the Net Lib library.

3,359 citations

Journal ArticleDOI
TL;DR: A predictive control scheme is proposed which is able to stabilize MLD systems on desired reference trajectories while fulfilling operating constraints, and possibly take into account previous qualitative knowledge in the form of heuristic rules.

2,980 citations

Journal ArticleDOI
TL;DR: If U is an ellipsoidal uncertainty set, then for some of the most important generic convex optimization problems (linear programming, quadratically constrained programming, semidefinite programming and others) the corresponding robust convex program is either exactly, or approximately, a tractable problem which lends itself to efficientalgorithms such as polynomial time interior point methods.
Abstract: We study convex optimization problems for which the data is not specified exactly and it is only known to belong to a given uncertainty set U, yet the constraints must hold for all possible values of the data from U. The ensuing optimization problem is called robust optimization. In this paper we lay the foundation of robust convex optimization. In the main part of the paper we show that if U is an ellipsoidal uncertainty set, then for some of the most important generic convex optimization problems (linear programming, quadratically constrained programming, semidefinite programming and others) the corresponding robust convex program is either exactly, or approximately, a tractable problem which lends itself to efficientalgorithms such as polynomial time interior point methods.

2,501 citations

Journal ArticleDOI
TL;DR: It is shown that the RC of an LP with ellipsoidal uncertainty set is computationally tractable, since it leads to a conic quadratic program, which can be solved in polynomial time.

1,809 citations