scispace - formally typeset
Search or ask a question
Author

Allen R. Braun

Bio: Allen R. Braun is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Dopamine receptor & American Sign Language. The author has an hindex of 51, co-authored 118 publications receiving 11936 citations. Previous affiliations of Allen R. Braun include United States Public Health Service.


Papers
More filters
Journal ArticleDOI
01 Jul 1997-Brain
TL;DR: Stages of sleep may be characterized by activation of widespread areas of the brain, including the centrencephalic, paralimbic and unimodal sensory regions, with the specific exclusion of areas which normally participate in the highest order analysis and integration of neural information.
Abstract: To assess dynamic changes in brain function throughout the sleep-wake cycle, CBF was measured with H2(15)O and PET in 37 normal male volunteers: (i) while awake prior to sleep onset; (ii) during Stage 3-4 sleep, i.e. slow wave sleep (SWS); (iii) during rapid eye movement (REM) sleep; and (iv) upon waking following recovery sleep. Subjects were monitored polysomnographically and PET images were acquired throughout the course of a single night. Stage-specific contrasts were performed using statistical parametric mapping. Data were analysed in repeated measures fashion, examining within-subject differences between stages [pre-sleep wakefulness-SWS (n = 20 subjects); SWS-post-sleep wakefulness (n = 14); SWS-REM sleep (n = 7); pre-sleep wakefulness-REM sleep (n = 8); REM sleep-post-sleep wakefulness (n = 7); pre-sleep wakefulness-post-sleep wakefulness (n = 20)]. State dependent changes in the activity of centrencephalic regions, including the brainstem, thalamus and basal forebrain (profound deactivations during SWS and reactivations during REM sleep) are consistent with the idea that these areas are constituents of brain systems which mediate arousal. Shifts in the level of activity of the striatum suggested that the basal ganglia might be more integrally involved in the orchestration of the sleep-wake cycle than previously thought. State-dependent changes in the activity of limbic and paralimbic areas, including the insula, cingulate and mesial temporal cortices, paralleled those observed in centrencephalic structures during both REM sleep and SWS. A functional dissociation between activity in higher order, heteromodal association cortices in the frontal and parietal lobes and unimodal sensory areas of the occipital and temporal lobes appeared to be characteristic of both SWS and REM sleep. SWS was associated with selective deactivation of the heteromodal association areas, while activity in primary and secondary sensory cortices was preserved. SWS may not, as previously thought, represent a generalized decrease in neuronal activity. On the other hand, REM sleep was characterized by selective activation of certain post-rolandic sensory cortices, while activity in the frontoparietal association cortices remained depressed. REM sleep may be characterized by activation of widespread areas of the brain, including the centrencephalic, paralimbic and unimodal sensory regions, with the specific exclusion of areas which normally participate in the highest order analysis and integration of neural information. Deactivation of the heteromodal association areas (the orbital, dorsolateral prefrontal and inferior parietal cortices) constitutes the single feature common to both non-REM and REM sleep states, and may be a defining characteristic of sleep itself. The stages of sleep could also be distinguished by characteristic differences in the relationships between the basal ganglia, thalamic nuclei and neocortical regions of interest.

1,137 citations

Journal ArticleDOI
TL;DR: By performing functional MRI in humans, it is shown that a natural, sleep-induced reduction of consciousness is reflected in altered correlation between DMN network components, most notably a reduced involvement of frontal cortex.
Abstract: The recent discovery of a circuit of brain regions that is highly active in the absence of overt behavior has led to a quest for revealing the possible function of this so-called default-mode network (DMN). A very recent study, finding similarities in awake humans and anesthetized primates, has suggested that DMN activity might not simply reflect ongoing conscious mentation but rather a more general form of network dynamics typical of complex systems. Here, by performing functional MRI in humans, it is shown that a natural, sleep-induced reduction of consciousness is reflected in altered correlation between DMN network components, most notably a reduced involvement of frontal cortex. This suggests that DMN may play an important role in the sustenance of conscious awareness.

629 citations

Journal ArticleDOI
27 Feb 2008-PLOS ONE
TL;DR: Investigating improvisation in professional jazz pianists using functional MRI found that improvisation was consistently characterized by a dissociated pattern of activity in the prefrontal cortex: extensive deactivation of dorsolateral prefrontal and lateral orbital regions with focal activation of the medial prefrontal (frontal polar) cortex.
Abstract: To investigate the neural substrates that underlie spontaneous musical performance, we examined improvisation in professional jazz pianists using functional MRI. By employing two paradigms that differed widely in musical complexity, we found that improvisation (compared to production of over-learned musical sequences) was consistently characterized by a dissociated pattern of activity in the prefrontal cortex: extensive deactivation of dorsolateral prefrontal and lateral orbital regions with focal activation of the medial prefrontal (frontal polar) cortex. Such a pattern may reflect a combination of psychological processes required for spontaneous improvisation, in which internally motivated, stimulus-independent behaviors unfold in the absence of central processes that typically mediate self-monitoring and conscious volitional control of ongoing performance. Changes in prefrontal activity during improvisation were accompanied by widespread activation of neocortical sensorimotor areas (that mediate the organization and execution of musical performance) as well as deactivation of limbic structures (that regulate motivation and emotional tone). This distributed neural pattern may provide a cognitive context that enables the emergence of spontaneous creative activity.

567 citations

Journal ArticleDOI
TL;DR: This work uses single-trial sparse-acquisition fMRI and a stimulus with parametrically varying segmental structure affecting primarily temporal properties to show that both left and right auditory cortices are remarkably sensitive to temporal structure.
Abstract: Lateralization of function in auditory cortex has remained a persistent puzzle. Previous studies using signals with differing spectrotemporal characteristics support a model in which the left hemisphere is more sensitive to temporal and the right more sensitive to spectral stimulus attributes. Here we use single-trial sparse-acquisition fMRI and a stimulus with parametrically varying segmental structure affecting primarily temporal properties. We show that both left and right auditory cortices are remarkably sensitive to temporal structure. Crucially, beyond bilateral sensitivity to timing information, we uncover two functionally significant interactions. First, local spectrotemporal signal structure is differentially processed in the superior temporal gyrus. Second, lateralized responses emerge in the higher-order superior temporal sulcus, where more slowly modulated signals preferentially drive the right hemisphere. The data support a model in which sounds are analyzed on two distinct timescales, 25–50 ms and 200–300 ms.

544 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

01 Jan 1964
TL;DR: In this paper, the notion of a collective unconscious was introduced as a theory of remembering in social psychology, and a study of remembering as a study in Social Psychology was carried out.
Abstract: Part I. Experimental Studies: 2. Experiment in psychology 3. Experiments on perceiving III Experiments on imaging 4-8. Experiments on remembering: (a) The method of description (b) The method of repeated reproduction (c) The method of picture writing (d) The method of serial reproduction (e) The method of serial reproduction picture material 9. Perceiving, recognizing, remembering 10. A theory of remembering 11. Images and their functions 12. Meaning Part II. Remembering as a Study in Social Psychology: 13. Social psychology 14. Social psychology and the matter of recall 15. Social psychology and the manner of recall 16. Conventionalism 17. The notion of a collective unconscious 18. The basis of social recall 19. A summary and some conclusions.

5,690 citations