scispace - formally typeset
Search or ask a question
Author

Allen Taflove

Other affiliations: IIT Research Institute, Ames Research Center, Motorola  ...read more
Bio: Allen Taflove is an academic researcher from Northwestern University. The author has contributed to research in topics: Finite-difference time-domain method & Scattering. The author has an hindex of 50, co-authored 285 publications receiving 30037 citations. Previous affiliations of Allen Taflove include IIT Research Institute & Ames Research Center.


Papers
More filters
Book
31 May 1995
TL;DR: This paper presents background history of space-grid time-domain techniques for Maxwell's equations scaling to very large problem sizes defense applications dual-use electromagnetics technology, and the proposed three-dimensional Yee algorithm for solving these equations.
Abstract: Part 1 Reinventing electromagnetics: background history of space-grid time-domain techniques for Maxwell's equations scaling to very large problem sizes defense applications dual-use electromagnetics technology. Part 2 The one-dimensional scalar wave equation: propagating wave solutions finite-difference approximation of the scalar wave equation dispersion relations for the one-dimensional wave equation numerical group velocity numerical stability. Part 3 Introduction to Maxwell's equations and the Yee algorithm: Maxwell's equations in three dimensions reduction to two dimensions equivalence to the wave equation in one dimension. Part 4 Numerical stability: TM mode time eigenvalue problem space eigenvalue problem extension to the full three-dimensional Yee algorithm. Part 5 Numerical dispersion: comparison with the ideal dispersion case reduction to the ideal dispersion case for special grid conditions dispersion-optimized basic Yee algorithm dispersion-optimized Yee algorithm with fourth-order accurate spatial differences. Part 6 Incident wave source conditions for free space and waveguides: requirements for the plane wave source condition the hard source total-field/scattered field formulation pure scattered field formulation choice of incident plane wave formulation. Part 7 Absorbing boundary conditions for free space and waveguides: Bayliss-Turkel scattered-wave annihilating operators Engquist-Majda one-way wave equations Higdon operator Liao extrapolation Mei-Fang superabsorption Berenger perfectly-matched layer (PML) absorbing boundary conditions for waveguides. Part 8 Near-to-far field transformation: obtaining phasor quantities via discrete fourier transformation surface equivalence theorem extension to three dimensions phasor domain. Part 9 Dispersive, nonlinear, and gain materials: linear isotropic case recursive convolution method linear gyrontropic case linear isotropic case auxiliary differential equation method, Lorentz gain media. Part 10 Local subcell models of the fine geometrical features: basis of contour-path FD-TD modelling the simplest contour-path subcell models the thin wire conformal modelling of curved surfaces the thin material sheet relativistic motion of PEC boundaries. Part 11 Explicit time-domain solution of Maxwell's equations using non-orthogonal and unstructured grids, Stephen Gedney and Faiza Lansing: nonuniform, orthogonal grids globally orthogonal global curvilinear co-ordinates irregular non-orthogonal unstructured grids analysis of printed circuit devices using the planar generalized Yee algorithm. Part 12 The body of revolution FD-TD algorithm, Thomas Jurgens and Gregory Saewert: field expansion difference equations for on-axis cells numerical stability PML absorbing boundary condition. Part 13 Modelling of electromagnetic fields in high-speed electronic circuits, Piket-May and Taflove. (part contents).

11,194 citations

Journal ArticleDOI
TL;DR: In this paper, a numerical method for the solution of the electromagnetic fields within an arbitrary dielectric scatterer of the order of one wavelength in diameter is described, and an error of less than /spl plusmn/10 percent in locating and evaluating the standing wave peaks within the cylinder is achieved for a program execution time of 1 min.
Abstract: A numerical method is described for the solution of the electromagnetic fields within an arbitrary dielectric scatterer of the order of one wavelength in diameter. The method treats the irradiation of the scatterer as an initial value problem. At t = 0, a plane-wave source of frequency f is assumed to be turned on. The diffraction of waves from this source is modeled by repeatedly solving a finite-difference analog of the time-dependent Maxwell's equations. Time stepping is continued until sinusoidual steady-state field values are observed at all points within the scatterer. The envelope of the standing wave is taken as the steady-state scattered field. As an example of this method, the computed results for a dielectric cylinder scatterer are presented. An error of less than /spl plusmn/10 percent in locating and evaluating the standing-wave peaks within the cylinder is achieved for a program execution time of 1 min. The extension of this method to the solution of the fields within three-dimensional dielectric scatterers is outlined.

1,300 citations

Book ChapterDOI
01 Dec 2005
TL;DR: The principal computational approaches for Maxwell's equations included the high-frequency asymptotic methods of Keller (1962) as well as Kouyoumjian and Pathak (1974) and the integral equation techniques of Harrington (1968) .
Abstract: Prior to abour 1990, the modeling of electromagnetic engineering systems was primarily implemented using solution techniques for the sinusoidal steady-state Maxwell's equations. Before about 1960, the principal approaches in this area involved closed-form and infinite-series analytical solutions, with numerical results from these analyses obtained using mechanical calculators. After 1960, the increasing availability of programmable electronic digital computers permitted such frequency-domain approaches to rise markedly in sophistication. Researchers were able to take advantage of the capabilities afforded by powerful new high-level programming languages such as Fortran, rapid random-access storage of large arrags of numbers, and computational speeds that were orders of magnitude faster than possible with mechanical calculators. In this period, the principal computational approaches for Maxwell's equations included the high-frequency asymptotic methods of Keller (1962) as well as Kouyoumjian and Pathak (1974) and the integral equation techniques of Harrington (1968) .

941 citations

Journal ArticleDOI
TL;DR: Not involving evanescent fields and not requiring mechanical scanning, photonic nanojets may provide a new means to detect and image nanoparticles of size well below the diffraction limit and yield a potential novel ultramicroscopy technique using visible light for detecting proteins, viral particles, and even single molecules.
Abstract: We report what we believe to be the first evidence of localized nanoscale photonic jets generated at the shadow-side surfaces of micronscale, circular dielectric cylinders illuminated by a plane wave These photonic nanojets have waists smaller than the diffraction limit and propagate over several optical wavelengths without significant diffraction We have found that such nanojets can enhance the backscattering of visible light by nanometer-scale dielectric particles located within the nanojets by several orders of magnitude Not involving evanescent fields and not requiring mechanical scanning, photonic nanojets may provide a new means to detect and image nanoparticles of size well below the diffraction limit This could yield a potential novel ultramicroscopy technique using visible light for detecting proteins, viral particles, and even single molecules; and monitoring molecular synthesis and aggregation processes of importance in many areas of biology, chemistry, material sciences, and tissue engineering

733 citations

Book
01 Jan 1998
TL;DR: A survey of the Finite-Difference Time Domain literature can be found in this article, where the authors present a set of techniques for time-domain analysis using multiresolution expansions.
Abstract: A Survey of the Finite-Difference Time-Domain Literature, by Kurt L. Shlager, Lockheed-Martin Missiles and Space Company, Sunnyvale, CA and John B. Schneider, Washington State University. High-Order Methods, by Eli Turkel, Tel Aviv University, Israel. Time-Domain Analysis Using Multiresolution Expansions, by Linda P. B. Katehi, University of Michigan, Ann Arbor James F. Harvey, U.S. Army Research Office, Research Triangle Park, NC and Emmanouil Tentzeris, Georgia Institute of Technology, Atlanta. Explicit Time-Domain Solutions of Maxwell's Equations via Generalized Grids, by Stephen D. Gedney, University of Kentucky, Lexington J. Alan Roden, Georgia Tech Research Institute, Atlanta Niel K. Madsen, Lawrence-Livermore National Laboratory, CA and Alireza H. Mohammadian, William F. Hall, Vijaya Shankar, and Christopher M. Rowell, Rockwell Science Center, Thousand Oaks, CA. The Perfectly Matched Layer Absorbing Medium, by Stephen D. Gedney, University of Kentucky, Lexington. Analysis of Periodic Structures, by James G. Maloney and Morris P. Kesler, Georgia Tech Research Institute, Atlanta. Modeling of Antennas, by James G. Maloney, Georgia Tech Research Institute, Atlanta and Glenn S. Smith, Georgia Institute of Technology, Atlanta. High-Speed Electronic Circuits with Active and Nonlinear Components, by Bijan Houshmand, Jet Propulsion Laboratory, CA Tatsuo Itoh, UCLA and Melinda Piket-May, University of Colorado, Boulder. Physics-Based Modeling of Millimeter-Wave Devices, by Samir M. El-Ghazaly, Arizona State University, Tempe. Microcavity Resonators, by Susan C. Hagness, University of Wisconsin, Madison. FDTD in Bioelectromagnetics: Safety Assessment and Medical Applications, by Om. P. Gandhi, University of Utah, Salt Lake City. Imaging and Inverse Problems, by Weng C. Chew, University of Illinois, Urbana-Champaign.

551 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Numerical experiments and numerical comparisons show that the PML technique works better than the others in all cases; using it allows to obtain a higher accuracy in some problems and a release of computational requirements in some others.

9,875 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment.
Abstract: The optical properties of metal nanoparticles have long been of interest in physical chemistry, starting with Faraday's investigations of colloidal gold in the middle 1800s. More recently, new lithographic techniques as well as improvements to classical wet chemistry methods have made it possible to synthesize noble metal nanoparticles with a wide range of sizes, shapes, and dielectric environments. In this feature article, we describe recent progress in the theory of nanoparticle optical properties, particularly methods for solving Maxwell's equations for light scattering from particles of arbitrary shape in a complex environment. Included is a description of the qualitative features of dipole and quadrupole plasmon resonances for spherical particles; a discussion of analytical and numerical methods for calculating extinction and scattering cross-sections, local fields, and other optical properties for nonspherical particles; and a survey of applications to problems of recent interest involving triangula...

9,086 citations

Journal ArticleDOI
TL;DR: This work fabricate, characterize, and analyze a MM absorber with a slightly lower predicted A(omega) of 96%.
Abstract: We present the design for an absorbing metamaterial (MM) with near unity absorbance A(omega). Our structure consists of two MM resonators that couple separately to electric and magnetic fields so as to absorb all incident radiation within a single unit cell layer. We fabricate, characterize, and analyze a MM absorber with a slightly lower predicted A(omega) of 96%. Unlike conventional absorbers, our MM consists solely of metallic elements. The substrate can therefore be optimized for other parameters of interest. We experimentally demonstrate a peak A(omega) greater than 88% at 11.5 GHz.

5,550 citations

Journal ArticleDOI
TL;DR: This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size and introduces a new form of L SPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances.
Abstract: Localized surface plasmon resonance (LSPR) spectroscopy of metallic nanoparticles is a powerful technique for chemical and biological sensing experiments. Moreover, the LSPR is responsible for the electromagnetic-field enhancement that leads to surface-enhanced Raman scattering (SERS) and other surface-enhanced spectroscopic processes. This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size. We also describe studies on the distance dependence of the enhanced electromagnetic field and the relationship between the plasmon resonance and the Raman excitation energy. Lastly, we introduce a new form of LSPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances. The results from these fundamental studies guide the design of new sensing experiments, illustrated through applications in which researchers use both LSPR wavelength-shift sensing and SERS to detect molecules of chemical and biological relevance.

5,444 citations