scispace - formally typeset
Search or ask a question
Author

Alok C. Bharti

Bio: Alok C. Bharti is an academic researcher from University of Delhi. The author has contributed to research in topics: Cancer & HPV infection. The author has an hindex of 38, co-authored 95 publications receiving 7744 citations. Previous affiliations of Alok C. Bharti include Indian Council of Medical Research & University of Texas MD Anderson Cancer Center.


Papers
More filters
Journal Article
TL;DR: Evidence has also been presented to suggest that curcumin can suppress tumor initiation, promotion and metastasis, and Pharmacologically,Curcumin has been found to be safe.
Abstract: Curcumin (diferuloylmethane) is a polyphenol derived from the plant Curcuma longa, commonly called turmeric. Extensive research over the last 50 years has indicated this polyphenol can both prevent and treat cancer. The anticancer potential of curcumin stems from its ability to suppress proliferation of a wide variety of tumor cells, down-regulate transcription factors NF- κB, AP-1 and Egr-1; down-regulate the expression of COX2, LOX, NOS, MMP-9, uPA, TNF, chemokines, cell surface adhesion molecules and cyclin D1; down-regulate growth factor receptors (such as EGFR and HER2); and inhibit the activity of c-Jun N-terminal kinase, protein tyrosine kinases and protein serine/threonine kinases. In several systems, curcumin has been described as a potent antioxidant and anti-inflammatory agent. Evidence has also been presented to suggest that curcumin can suppress tumor initiation, promotion and metastasis. Pharmacologically, curcumin has been found to be safe. Human clinical trials indicated no dose-limiting toxicity when administered at doses up to 10 g/day. All of these studies suggest that curcumin has enormous potential in the prevention and therapy of cancer. The current review describes in detail the data supporting these studies. Curcumin, derived from turmeric (vernacular name: Haldi), is a rhizome of the plant Curcuma longa. The medicinal use of this plant has been documented in Ayurveda (the Indian

2,453 citations

Journal ArticleDOI
01 Feb 2003-Blood
TL;DR: It is found that curcumin down-regulates NF-κB in human MM cells, leading to the suppression of proliferation and induction of apoptosis, thus providing the molecular basis for the treatment of MM patients with this pharmacologically safe agent.

674 citations

Journal ArticleDOI
TL;DR: It is demonstrated that curcumin was a potent inhibitor of STAT3 phosphorylation, and this plays a role in the suppression of MM proliferation.
Abstract: Numerous reports suggest that IL-6 promotes survival and proliferation of multiple myeloma (MM) cells through the phosphorylation of a cell signaling protein, STAT3. Thus, agents that suppress STAT3 phosphorylation have potential for the treatment of MM. In the present report, we demonstrate that curcumin (diferuloylmethane), a pharmacologically safe agent in humans, inhibited IL-6–induced STAT3 phosphorylation and consequent STAT3 nuclear translocation. Curcumin had no effect on STAT5 phosphorylation, but inhibited the IFN-α-induced STAT1 phosphorylation. The constitutive phosphorylation of STAT3 found in certain MM cells was also abrogated by treatment with curcumin. Curcumin-induced inhibition of STAT3 phosphorylation was reversible. Compared with AG490, a well-characterized Janus kinase 2 inhibitor, curcumin was a more rapid (30 min vs 8 h) and more potent (10 μM vs 100 μM) inhibitor of STAT3 phosphorylation. In a similar manner, the dose of curcumin completely suppressed proliferation of MM cells; the same dose of AG490 had no effect. In contrast, a cell-permeable STAT3 inhibitor peptide that can inhibit the STAT3 phosphorylation mediated by Src blocked the constitutive phosphorylation of STAT3 and also suppressed the growth of myeloma cells. TNF-α and lymphotoxin also induced the proliferation of MM cells, but through a mechanism independent of STAT3 phosphorylation. In addition, dexamethasone-resistant MM cells were found to be sensitive to curcumin. Overall, our results demonstrated that curcumin was a potent inhibitor of STAT3 phosphorylation, and this plays a role in the suppression of MM proliferation.

499 citations

Journal ArticleDOI
TL;DR: Observations suggest that NF-kappaB is an ideal target for chemoprevention and chemosensitization and evidence supporting this hypothesis is reviewed.

493 citations

Journal ArticleDOI
15 Apr 2004-Blood
TL;DR: It is indicated that fresh cells from MM patients express constitutively active NF-kappaB and STAT3, and suppression of these transcription factors inhibits the survival of the cells.

322 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Enhanced bioavailability of curcumin in the near future is likely to bring this promising natural product to the forefront of therapeutic agents for treatment of human disease.
Abstract: Curcumin, a polyphenolic compound derived from dietary spice turmeric, possesses diverse pharmacologic effects including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activities. Phase I clinical trials have shown that curcumin is safe even at high doses (12 g/day) in humans but exhibit poor bioavailability. Major reasons contributing to the low plasma and tissue levels of curcumin appear to be due to poor absorption, rapid metabolism, and rapid systemic elimination. To improve the bioavailability of curcumin, numerous approaches have been undertaken. These approaches involve, first, the use of adjuvant like piperine that interferes with glucuronidation; second, the use of liposomal curcumin; third, curcumin nanoparticles; fourth, the use of curcumin phospholipid complex; and fifth, the use of structural analogues of curcumin (e.g., EF-24). The latter has been reported to have a rapid absorption with a peak plasma half-life. Despite the lower bioavailability, therapeutic efficacy of...

4,275 citations

Journal ArticleDOI
TL;DR: The advances in modeling and analysis of gut microbiota will further the authors' knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.
Abstract: Gut microbiota is an assortment of microorganisms inhabiting the length and width of the mammalian gastrointestinal tract. The composition of this microbial community is host specific, evolving throughout an individual's lifetime and susceptible to both exogenous and endogenous modifications. Recent renewed interest in the structure and function of this "organ" has illuminated its central position in health and disease. The microbiota is intimately involved in numerous aspects of normal host physiology, from nutritional status to behavior and stress response. Additionally, they can be a central or a contributing cause of many diseases, affecting both near and far organ systems. The overall balance in the composition of the gut microbial community, as well as the presence or absence of key species capable of effecting specific responses, is important in ensuring homeostasis or lack thereof at the intestinal mucosa and beyond. The mechanisms through which microbiota exerts its beneficial or detrimental influences remain largely undefined, but include elaboration of signaling molecules and recognition of bacterial epitopes by both intestinal epithelial and mucosal immune cells. The advances in modeling and analysis of gut microbiota will further our knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.

3,077 citations

Journal ArticleDOI
TL;DR: Attention has recently been focused on intracellular-signalling cascades as common molecular targets for various chemopreventive phytochemicals.
Abstract: Chemoprevention refers to the use of agents to inhibit, reverse or retard tumorigenesis. Numerous phytochemicals derived from edible plants have been reported to interfere with a specific stage of the carcinogenic process. Many mechanisms have been shown to account for the anticarcinogenic actions of dietary constituents, but attention has recently been focused on intracellular-signalling cascades as common molecular targets for various chemopreventive phytochemicals.

2,804 citations

Journal ArticleDOI
TL;DR: The hypothesis is put forward that activation of nuclear factor-κB by the classical, IKK-β (inhibitor-of-NF-β kinase-β)-dependent pathway is a crucial mediator of inflammation-induced tumour growth and progression, as well as an important modulator of tumour surveillance and rejection.
Abstract: There has been much effort recently to probe the long-recognized relationship between the pathological processes of infection, inflammation and cancer. For example, epidemiological studies have shown that approximately 15% of human deaths from cancer are associated with chronic viral or bacterial infections. This Review focuses on the molecular mechanisms that connect infection, inflammation and cancer, and it puts forward the hypothesis that activation of nuclear factor-kappaB (NF-kappaB) by the classical, IKK-beta (inhibitor-of-NF-kappaB kinase-beta)-dependent pathway is a crucial mediator of inflammation-induced tumour growth and progression, as well as an important modulator of tumour surveillance and rejection.

2,746 citations

Journal Article
TL;DR: Evidence has also been presented to suggest that curcumin can suppress tumor initiation, promotion and metastasis, and Pharmacologically,Curcumin has been found to be safe.
Abstract: Curcumin (diferuloylmethane) is a polyphenol derived from the plant Curcuma longa, commonly called turmeric. Extensive research over the last 50 years has indicated this polyphenol can both prevent and treat cancer. The anticancer potential of curcumin stems from its ability to suppress proliferation of a wide variety of tumor cells, down-regulate transcription factors NF- κB, AP-1 and Egr-1; down-regulate the expression of COX2, LOX, NOS, MMP-9, uPA, TNF, chemokines, cell surface adhesion molecules and cyclin D1; down-regulate growth factor receptors (such as EGFR and HER2); and inhibit the activity of c-Jun N-terminal kinase, protein tyrosine kinases and protein serine/threonine kinases. In several systems, curcumin has been described as a potent antioxidant and anti-inflammatory agent. Evidence has also been presented to suggest that curcumin can suppress tumor initiation, promotion and metastasis. Pharmacologically, curcumin has been found to be safe. Human clinical trials indicated no dose-limiting toxicity when administered at doses up to 10 g/day. All of these studies suggest that curcumin has enormous potential in the prevention and therapy of cancer. The current review describes in detail the data supporting these studies. Curcumin, derived from turmeric (vernacular name: Haldi), is a rhizome of the plant Curcuma longa. The medicinal use of this plant has been documented in Ayurveda (the Indian

2,453 citations