scispace - formally typeset
Search or ask a question
Author

Alon Orlitsky

Other affiliations: Tel Aviv University, Hebrew University of Jerusalem, Bell Labs  ...read more
Bio: Alon Orlitsky is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Estimator & Probability distribution. The author has an hindex of 38, co-authored 169 publications receiving 5163 citations. Previous affiliations of Alon Orlitsky include Tel Aviv University & Hebrew University of Jerusalem.


Papers
More filters
Journal ArticleDOI
17 Sep 1995
TL;DR: It is shown that if only the sender can transmit, the number of bits required is a conditional entropy of a naturally defined graph.
Abstract: A sender communicates with a receiver who wishes to reliably evaluate a function of their combined data. We show that if only the sender can transmit, the number of bits required is a conditional entropy of a naturally defined graph. We also determine the number of bits needed when the communicators exchange two messages. Reference is made to the results of rate distortion in evaluating the function of two random variables.

455 citations

Proceedings ArticleDOI
23 Oct 1995
TL;DR: It is shown that if only the sender can transmit, the number of bits required is a conditional entropy of a naturally defined graph.
Abstract: A sender communicates with a receiver who wishes to reliably evaluate a function of their combined data. We show that if only the sender can transmit, the number of bits required is a conditional entropy of a naturally defined graph. We also determine the number of bits needed when the communicators exchange two messages.

280 citations

Journal ArticleDOI
15 Sep 2003
TL;DR: Several results on the asymptotic behavior of stopping sets in Tanner-graph ensembles are derived, including an expression for the normalized average stopping set distribution, yielding a critical fraction of the block length above which codes have exponentially many stopping sets of that size.
Abstract: Stopping sets determine the performance of low-density parity-check (LDPC) codes under iterative decoding over erasure channels. We derive several results on the asymptotic behavior of stopping sets in Tanner-graph ensembles, including the following. An expression for the normalized average stopping set distribution, yielding, in particular, a critical fraction of the block length above which codes have exponentially many stopping sets of that size. A relation between the degree distribution and the likely size of the smallest nonempty stopping set, showing that for a /spl radic/1-/spl lambda/'(0)/spl rho/'(1) fraction of codes with /spl lambda/'(0)/spl rho/'(1) 2, the smallest nonempty stopping set is linear in the block length. Bounds on the average block error probability as a function of the erasure probability /spl epsi/, showing in particular that for codes with lowest variable degree 2, if /spl epsi/ is below a certain threshold, the asymptotic average block error probability is 1-/spl radic/1-/spl lambda/'(0)/spl rho/'(1)/spl epsi/.

261 citations

Journal ArticleDOI
TL;DR: The problem of error-free transmission capacity of a noisy channel was posed by Shannon in 1956 and remains unsolved, Nevertheless, partial results for this and similar channel and source coding problems have had a considerable impact on information theory, computer science, and mathematics.
Abstract: The problem of error-free transmission capacity of a noisy channel was posed by Shannon in 1956 and remains unsolved, Nevertheless, partial results for this and similar channel and source coding problems have had a considerable impact on information theory, computer science, and mathematics. We review the techniques, results, information measures, and challenges encountered in this ongoing quest.

256 citations

Journal ArticleDOI
Noga Alon1, Alon Orlitsky2
TL;DR: The expected number of bits the sender must transmit for one and for multiple instances in two communication scenarios are studied and relate this number to the chromatic and Korner (1973) entropies of a naturally defined graph.
Abstract: A sender wants to accurately convey information to a receiver who has some, possibly related, data. We study the expected number of bits the sender must transmit for one and for multiple instances in two communication scenarios and relate this number to the chromatic and Korner (1973) entropies of a naturally defined graph.

173 citations


Cited by
More filters
Book
01 Oct 2004
TL;DR: Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts, and discusses many methods from different fields, including statistics, pattern recognition, neural networks, artificial intelligence, signal processing, control, and data mining.
Abstract: The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. In order to present a unified treatment of machine learning problems and solutions, it discusses many methods from different fields, including statistics, pattern recognition, neural networks, artificial intelligence, signal processing, control, and data mining. All learning algorithms are explained so that the student can easily move from the equations in the book to a computer program. The text covers such topics as supervised learning, Bayesian decision theory, parametric methods, multivariate methods, multilayer perceptrons, local models, hidden Markov models, assessing and comparing classification algorithms, and reinforcement learning. New to the second edition are chapters on kernel machines, graphical models, and Bayesian estimation; expanded coverage of statistical tests in a chapter on design and analysis of machine learning experiments; case studies available on the Web (with downloadable results for instructors); and many additional exercises. All chapters have been revised and updated. Introduction to Machine Learning can be used by advanced undergraduates and graduate students who have completed courses in computer programming, probability, calculus, and linear algebra. It will also be of interest to engineers in the field who are concerned with the application of machine learning methods. Adaptive Computation and Machine Learning series

3,950 citations

BookDOI
31 Mar 2010
TL;DR: Semi-supervised learning (SSL) as discussed by the authors is the middle ground between supervised learning (in which all training examples are labeled) and unsupervised training (where no label data are given).
Abstract: In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents state-of-the-art algorithms, a taxonomy of the field, selected applications, benchmark experiments, and perspectives on ongoing and future research. Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction. Adaptive Computation and Machine Learning series

3,773 citations

Book
16 Jan 2012
TL;DR: In this article, a comprehensive treatment of network information theory and its applications is provided, which provides the first unified coverage of both classical and recent results, including successive cancellation and superposition coding, MIMO wireless communication, network coding and cooperative relaying.
Abstract: This comprehensive treatment of network information theory and its applications provides the first unified coverage of both classical and recent results. With an approach that balances the introduction of new models and new coding techniques, readers are guided through Shannon's point-to-point information theory, single-hop networks, multihop networks, and extensions to distributed computing, secrecy, wireless communication, and networking. Elementary mathematical tools and techniques are used throughout, requiring only basic knowledge of probability, whilst unified proofs of coding theorems are based on a few simple lemmas, making the text accessible to newcomers. Key topics covered include successive cancellation and superposition coding, MIMO wireless communication, network coding, and cooperative relaying. Also covered are feedback and interactive communication, capacity approximations and scaling laws, and asynchronous and random access channels. This book is ideal for use in the classroom, for self-study, and as a reference for researchers and engineers in industry and academia.

2,442 citations