scispace - formally typeset
Search or ask a question
Author

Alphons A. Antonysamy

Bio: Alphons A. Antonysamy is an academic researcher from GKN. The author has contributed to research in topics: Texture (crystalline) & Microstructure. The author has an hindex of 8, co-authored 11 publications receiving 1095 citations. Previous affiliations of Alphons A. Antonysamy include Indian Institute of Technology Ropar & University of Manchester.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of geometry on the variability in the grain structure and texture, seen in Tisingle bond6Al single bond4V alloy components produced by Selective Electron Beam Melting (SEBM), has been investigated.

570 citations

Journal ArticleDOI
TL;DR: In this paper, the macrostructure, microstructure and mechanical properties of a Ti-6Al-4V alloy after WAAM deposition have been investigated, and the average yield and ultimate tensile strengths of the as-deposited material were found to be slightly lower than those for a forged Ti- 6Al 4V bar (MIL-T 9047), however, the ductility was similar and the mean fatigue life was significantly higher.
Abstract: Wire and arc additive manufacturing (WAAM) is a novel manufacturing technique in which large metal components can be fabricated layer by layer. In this study, the macrostructure, microstructure, and mechanical properties of a Ti-6Al-4V alloy after WAAM deposition have been investigated. The macrostructure of the arc-deposited Ti-6Al-4V was characterized by epitaxial growth of large columnar prior-β grains up through the deposited layers, while the microstructure consisted of fine Widmanstatten α in the upper deposited layers and a banded coarsened Widmanstatten lamella α in the lower layers. This structure developed due to the repeated rapid heating and cooling thermal cycling that occurs during the WAAM process. The average yield and ultimate tensile strengths of the as-deposited material were found to be slightly lower than those for a forged Ti-6Al-4V bar (MIL-T 9047); however, the ductility was similar and, importantly, the mean fatigue life was significantly higher. A small number of WAAM specimens exhibited early fatigue failure, which can be attributed to the rare occurrence of gas pores formed during deposition.

512 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the efficacy of a new approach to promote β grain refinement in wire-arc additive manufacturing (WAAM) of large scale parts, which combines a rolling step sequentially with layer deposition and found that when applied in-process, to each added layer, only a surprisingly low level of deformation is required to greatly reduce the β grain size.

232 citations

Journal ArticleDOI
TL;DR: In this paper, a multiscale model is developed to investigate the evolution mechanisms of site-specific grain structures during additive manufacturing of metallic alloys, using the selective electron beam melting (SEBM) fabrication of Ti-6Al-4V as an example.

79 citations

Journal ArticleDOI
TL;DR: In this article, the effect of build geometry on the grain structure and associated texture in Ti-6Al-4V ALM components produced by Selective Electron Beam Melting (SEBM) was investigated.
Abstract: In titanium alloys it is known that in bulk sections the solidification conditions in ALM commonly lead to undesirable, coarse, columnar β grain structures. Here, we have investigated the effect of build geometry on the grain structure and associated texture in Ti-6Al-4V ALM components produced by Selective Electron Beam Melting (SEBM). Through reconstruction of the primary β-phase, it has been confirmed that in thick sections large columnar β grains grow with a strong β fibre texture, although there is a significant skin effect. In contrast, in thin walls nucleation off the surrounding powder and growth inwards dominates. Local heterogeneities are also observed within section transitions. It is shown that the weaker α transformation texture arises from a random distribution across the possible habit variants.

28 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the emerging research on additive manufacturing of metallic materials is provided in this article, which provides a comprehensive overview of the physical processes and the underlying science of metallurgical structure and properties of the deposited parts.

4,192 citations

Journal ArticleDOI
TL;DR: The state-of-the-art of additive manufacturing (AM) can be classified into three categories: direct digital manufacturing, free-form fabrication, or 3D printing as discussed by the authors.
Abstract: This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

4,055 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the complex relationship between additive manufacturing processes, microstructure and resulting properties for metals, and typical microstructures for additively manufactured steel, aluminium and titanium are presented.

2,837 citations

Journal ArticleDOI
TL;DR: In this article, a review of additive manufacturing (AM) techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid-state precipitation, mechanical properties and post-processing metallurgy.
Abstract: Additive manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire or sheets in a process that proceeds layer by layer. Many techniques (using many different names) have been developed to accomplish this via melting or solid-state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid-state precipitation, mechanical properties and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Only a few alloys have been developed for commercial production, but recent efforts are presented as a path for the ongoing development of new materials for AM processes.

1,713 citations

Journal ArticleDOI
TL;DR: In this paper, the recent progress on Ti6Al4V fabricated by three mostly developed additive manufacturing techniques-directed energy deposition (DED), selective laser melting (SLM) and electron beam melting (EBM)-is thoroughly investigated and compared.

1,248 citations