scispace - formally typeset
Search or ask a question
Author

Alvaro G. Hernandez

Bio: Alvaro G. Hernandez is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 35, co-authored 84 publications receiving 4913 citations. Previous affiliations of Alvaro G. Hernandez include University of Southern California & Urbana University.


Papers
More filters
Journal ArticleDOI
07 Jul 2017-Science
TL;DR: A 10.1-gigabase assembly of the 14 chromosomes of wild tetraploid wheat, as well as analyses of gene content, genome architecture, and genetic diversity reveal genomic regions bearing the signature of selection under domestication.
Abstract: Wheat (Triticum spp.) is one of the founder crops that likely drove the Neolithic transition to sedentary agrarian societies in the Fertile Crescent more than 10,000 years ago. Identifying genetic modifications underlying wheat's domestication requires knowledge about the genome of its allo-tetraploid progenitor, wild emmer (T. turgidum ssp. dicoccoides). We report a 10.1-gigabase assembly of the 14 chromosomes of wild tetraploid wheat, as well as analyses of gene content, genome architecture, and genetic diversity. With this fully assembled polyploid wheat genome, we identified the causal mutations in Brittle Rachis 1 (TtBtr1) genes controlling shattering, a key domestication trait. A study of genomic diversity among wild and domesticated accessions revealed genomic regions bearing the signature of selection under domestication. This reference assembly will serve as a resource for accelerating the genome-assisted improvement of modern wheat varieties.

622 citations

Journal ArticleDOI
TL;DR: The pineapple lineage has transitioned from C3 photosynthesis to CAM, with CAM-related genes exhibiting a diel expression pattern in photosynthetic tissues, providing the first cis-regulatory link between CAM and circadian clock regulation.
Abstract: Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 and MD2 and a wild pineapple relative, Ananas bracteatus accession CB5. The pineapple genome has one fewer ancient whole-genome duplication event than sequenced grass genomes and a conserved karyotype with seven chromosomes from before the ρ duplication event. The pineapple lineage has transitioned from C3 photosynthesis to CAM, with CAM-related genes exhibiting a diel expression pattern in photosynthetic tissues. CAM pathway genes were enriched with cis-regulatory elements associated with the regulation of circadian clock genes, providing the first cis-regulatory link between CAM and circadian clock regulation. Pineapple CAM photosynthesis evolved by the reconfiguration of pathways in C3 plants, through the regulatory neofunctionalization of preexisting genes and not through the acquisition of neofunctionalized genes via whole-genome or tandem gene duplication.

424 citations

Journal ArticleDOI
TL;DR: An efficient procedure for isolating RNA from bud, internodal shoot, flower, and fruit tissues of apple has been developed and is of high quality and is undegraded as assessed by spectrophotometric readings and electrophoresis in denaturing agarose gels.
Abstract: Recovering RNA of high quality and quantity is a prerequisite for ensuring representation of all expressed genes in a cDNA library. An efficient procedure for isolating RNA from bud, internodal shoot, flower, and fruit tissues of apple has been developed. This protocol does not involve the use of phenol, lyophilization, or ultracentrifugation. In addition, this protocol overcomes problems of both RNA degradation and low yield attributed to oxidation by polyphenolic compounds and coprecipitation with polysaccharides, both abundant components in apple fruit and flower tissues. Isolated RNA is of high quality and is undegraded as assessed by spectrophotometric readings and electrophoresis in denaturing agarose gels. RNA quality is further assessed following its use in reverse transcription and cDNA library construction, and it can be used for a number of downstream analyses, including Northern blot hybridization and reverse transcription-polymerase chain reaction (RT-PCR). With this modified protocol, 25–900 μg of total RNA is routinely obtained from 1 g of fresh material. This method is of low cost and easy to perform.

379 citations

Journal ArticleDOI
TL;DR: It is proposed that Y581S in ABCG2 is the causative site for this QTL, corresponding to the segregation status of all 3 heterozygous and 15 homozygous sires for the QTL in the Israeli and U.S. Holstein populations.
Abstract: We previously localized a quantitative trait locus (QTL) on chromosome 6 affecting milk fat and protein concentration to a 4-cM confidence interval, centered on the microsatellite BM143. We characterized the genes and sequence variation in this region and identified common haplotypes spanning five polymorphic sites in the genes IBSP, SPP1, PKD2, and ABCG2 for two sires heterozygous for this QTL. Expression of SPP1 and ABCG2 in the bovine mammary gland increased from parturition through lactation. SPP1 and all the coding exons of ABCG2 and PKD2 were sequenced for these two sires. The single nucleotide change capable of encoding a substitution of tyrosine-581 to serine (Y581S) in the ABCG2 transporter was the only polymorphism corresponding to the segregation status of all 3 heterozygous and 15 homozygous sires for the QTL in the Israeli and U.S. Holstein populations. The allele substitution fixed effects on the genetic evaluations of 335 Israeli sires were -341 kg milk, +0.16% fat, and +0.13% protein (F-value = 200). No other polymorphism gave significant effect for fat and protein concentration in models that also included Y581S. The allele substitution effects on the genetic evaluations of 670 cows, daughters of two heterozygous sires, were -226 kg milk, 0.09% fat, and 0.08% protein (F-value = 394), with partial dominance towards the 581S homozygotes. We therefore propose that Y581S in ABCG2 is the causative site for this QTL.

378 citations

Journal ArticleDOI
Ben M. Sadd1, Ben M. Sadd2, Seth M. Barribeau3, Seth M. Barribeau2  +151 moreInstitutions (51)
TL;DR: Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.
Abstract: The shift from solitary to social behavior is one of the major evolutionary transitions Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

337 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
Rudi Appels1, Rudi Appels2, Kellye Eversole, Nils Stein3  +204 moreInstitutions (45)
17 Aug 2018-Science
TL;DR: This annotated reference sequence of wheat is a resource that can now drive disruptive innovation in wheat improvement, as this community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.
Abstract: An annotated reference sequence representing the hexaploid bread wheat genome in 21 pseudomolecules has been analyzed to identify the distribution and genomic context of coding and noncoding elements across the A, B, and D subgenomes. With an estimated coverage of 94% of the genome and containing 107,891 high-confidence gene models, this assembly enabled the discovery of tissue- and developmental stage-related coexpression networks by providing a transcriptome atlas representing major stages of wheat development. Dynamics of complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. This community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.

2,118 citations

Journal ArticleDOI
TL;DR: This review focuses on mammalian autophagy, and an overview of the understanding of its machinery and the signaling cascades that regulate it is given, and the possibility of autophagic upregulation as a therapeutic approach for various conditions is considered.
Abstract: (Macro)autophagy is a bulk degradation process that mediates the clearance of long-lived proteins and organelles. Autophagy is initiated by double-membraned structures, which engulf portions of cytoplasm. The resulting autophagosomes ultimately fuse with lysosomes, where their contents are degraded. Although the term autophagy was first used in 1963, the field has witnessed dramatic growth in the last 5 years, partly as a consequence of the discovery of key components of its cellular machinery. In this review we focus on mammalian autophagy, and we give an overview of the understanding of its machinery and the signaling cascades that regulate it. As recent studies have also shown that autophagy is critical in a range of normal human physiological processes, and defective autophagy is associated with diverse diseases, including neurodegeneration, lysosomal storage diseases, cancers, and Crohn's disease, we discuss the roles of autophagy in health and disease, while trying to critically evaluate if the coincidence between autophagy and these conditions is causal or an epiphenomenon. Finally, we consider the possibility of autophagy upregulation as a therapeutic approach for various conditions.

1,616 citations

10 Dec 2007
TL;DR: The experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.
Abstract: EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

1,528 citations