scispace - formally typeset
Search or ask a question
Author

Alvin Hing Lun Chau

Bio: Alvin Hing Lun Chau is an academic researcher from University of Auckland. The author has contributed to research in topics: Photonic-crystal fiber & Supercontinuum. The author has an hindex of 3, co-authored 3 publications receiving 741 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an ultrabroadband octave-spanning white-light continuum is generated with 60-ps pump pulses of subkilowatt peak power, and the primary mechanism of spectral broadening is identified as the combined action of stimulated Raman scattering and parametric four-wave mixing.
Abstract: Supercontinuum generation is investigated experimentally and numerically in a highly nonlinear index-guiding photonic crystal optical fiber in a regime in which self-phase modulation of the pump wave makes a negligible contribution to spectral broadening. An ultrabroadband octave-spanning white-light continuum is generated with 60-ps pump pulses of subkilowatt peak power. The primary mechanism of spectral broadening is identified as the combined action of stimulated Raman scattering and parametric four-wave mixing. The observation of a strong anti-Stokes Raman component reveals the importance of the coupling between stimulated Raman scattering and parametric four-wave mixing in highly nonlinear photonic crystal fibers and also indicates that non-phase-matched processes contribute to the continuum. Additionally, the pump input polarization affects the generated continuum through the influence of polarization modulational instability. The experimental results are in good agreement with detailed numerical simulations. These findings demonstrate the importance of index-guiding photonic crystal fibers for the design of picosecond and nanosecond supercontinuum light sources.

446 citations

Journal ArticleDOI
TL;DR: These findings demonstrate that ultrafast femtosecond pulses are not needed for efficient supercontinuum generation in photonic crystal fibers.
Abstract: The generation of a spatially single-mode white-light supercontinuum has been observed in a photonic crystal fiber pumped with 60-ps pulses of subkilowatt peak power. The spectral broadening is identified as being due to the combined action of stimulated Raman scattering and parametric four-wave-mixing generation, with a negligible contribution from the self-phase modulation of the pump pulses. The experimental results are in good agreement with detailed numerical simulations. These findings demonstrate that ultrafast femtosecond pulses are not needed for efficient supercontinuum generation in photonic crystal fibers.

305 citations

Proceedings ArticleDOI
26 Mar 2001
TL;DR: In this article, a supercontinuum generation in a regime where the self-phase modulation of the pump wave gives a negligible contribution to the spectral broadening reveals the importance of parametric and Raman effects in photonic crystal fibers.
Abstract: Supercontinuum generation in a regime where the self-phase-modulation of the pump wave gives a negligible contribution to the spectral broadening reveals the importance of parametric and Raman effects in photonic crystal fibers.

14 citations


Cited by
More filters
Journal ArticleDOI
04 Oct 2006
TL;DR: In this paper, a review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime.
Abstract: A topical review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime. Results from numerical simulations are used to discuss the temporal and spectral characteristics of the supercontinuum, and to interpret the physics of the underlying spectral broadening processes. Particular attention is given to the case of supercontinuum generation seeded by femtosecond pulses in the anomalous group velocity dispersion regime of photonic crystal fiber, where the processes of soliton fission, stimulated Raman scattering, and dispersive wave generation are reviewed in detail. The corresponding intensity and phase stability properties of the supercontinuum spectra generated under different conditions are also discussed.

3,361 citations

Journal ArticleDOI
TL;DR: OCT as discussed by the authors synthesises cross-sectional images from a series of laterally adjacent depth-scans, which can be used to assess tissue and cell function and morphology in situ.
Abstract: There have been three basic approaches to optical tomography since the early 1980s: diffraction tomography, diffuse optical tomography and optical coherence tomography (OCT). Optical techniques are of particular importance in the medical field, because these techniques promise to be safe and cheap and, in addition, offer a therapeutic potential. Advances in OCT technology have made it possible to apply OCT in a wide variety of applications but medical applications are still dominating. Specific advantages of OCT are its high depth and transversal resolution, the fact, that its depth resolution is decoupled from transverse resolution, high probing depth in scattering media, contact-free and non-invasive operation, and the possibility to create various function dependent image contrasting methods. This report presents the principles of OCT and the state of important OCT applications. OCT synthesises cross-sectional images from a series of laterally adjacent depth-scans. At present OCT is used in three different fields of optical imaging, in macroscopic imaging of structures which can be seen by the naked eye or using weak magnifications, in microscopic imaging using magnifications up to the classical limit of microscopic resolution and in endoscopic imaging, using low and medium magnification. First, OCT techniques, like the reflectometry technique and the dual beam technique were based on time-domain low coherence interferometry depth-scans. Later, Fourier-domain techniques have been developed and led to new imaging schemes. Recently developed parallel OCT schemes eliminate the need for lateral scanning and, therefore, dramatically increase the imaging rate. These schemes use CCD cameras and CMOS detector arrays as photodetectors. Video-rate three-dimensional OCT pictures have been obtained. Modifying interference microscopy techniques has led to high-resolution optical coherence microscopy that achieved sub-micrometre resolution. This report is concluded with a short presentation of important OCT applications. Ophthalmology is, due to the transparent ocular structures, still the main field of OCT application. The first commercial instrument too has been introduced for ophthalmic diagnostics (Carl Zeiss Meditec AG). Advances in using near-infrared light, however, opened the path for OCT imaging in strongly scattering tissues. Today, optical in vivo biopsy is one of the most challenging fields of OCT application. High resolution, high penetration depth, and its potential for functional imaging attribute to OCT an optical biopsy quality, which can be used to assess tissue and cell function and morphology in situ. OCT can already clarify the relevant architectural tissue morphology. For many diseases, however, including cancer in its early stages, higher resolution is necessary. New broad-bandwidth light sources, like photonic crystal fibres and superfluorescent fibre sources, and new contrasting techniques, give access to new sample properties and unmatched sensitivity and resolution.

1,914 citations

Journal ArticleDOI
TL;DR: The history, fabrication, theory, numerical modeling, optical properties, guidance mechanisms, and applications of photonic-crystal fibers are reviewed.
Abstract: The history, fabrication, theory, numerical modeling, optical properties, guidance mechanisms, and applications of photonic-crystal fibers are reviewed

1,488 citations

Journal ArticleDOI
TL;DR: The coherence of the supercontinuum is shown to depend strongly on the input pulse's duration and wavelength, and optimal conditions for the generation of coherent supercontinua are discussed.
Abstract: Numerical simulations have been used in studies of the temporal and spectral features of supercontinuum generation in photonic crystal and tapered optical fibers. In particular, an ensemble average over multiple simulations performed with random quantum noise on the input pulse allows the coherence of the supercontinuum to be quantified in terms of the dependence of the degree of first-order coherence on the wavelength. The coherence is shown to depend strongly on the input pulse’s duration and wavelength, and optimal conditions for the generation of coherent supercontinua are discussed.

488 citations

Journal ArticleDOI
TL;DR: Submicron-diameter tapered fibres and photonic crystal fibre cores, both of which are silica-air waveguides with low dispersion at 532 nm, were made using a conventional tapering process to generate a single-mode supercontinuum broad enough to fill the visible spectrum without spreading far beyond it.
Abstract: Submicron-diameter tapered fibres and photonic crystal fibre cores, both of which are silica-air waveguides with low dispersion at 532 nm, were made using a conventional tapering process. In just cm of either waveguide, ns pulses from a low-power 532-nm microchip laser generated a single-mode supercontinuum broad enough to fill the visible spectrum without spreading far beyond it.

466 citations