scispace - formally typeset
Search or ask a question
Author

Amadeu K. Sum

Bio: Amadeu K. Sum is an academic researcher from Colorado School of Mines. The author has contributed to research in topics: Clathrate hydrate & Hydrate. The author has an hindex of 52, co-authored 237 publications receiving 9427 citations. Previous affiliations of Amadeu K. Sum include Technical University of Denmark & KAIST.


Papers
More filters
Journal ArticleDOI
20 Nov 2009-Science
TL;DR: Direct molecular dynamics simulations of the spontaneous nucleation and growth of methane hydrate offer detailed insight into the process of hydrate nucleation, and Cooperative organization is observed to lead to methane adsorption onto planar faces of water and the fluctuating formation and dissociation of early hydrate cages.
Abstract: Despite the industrial implications and worldwide abundance of gas hydrates, the formation mechanism of these compounds remains poorly understood. We report direct molecular dynamics simulations of the spontaneous nucleation and growth of methane hydrate. The multiple-microsecond trajectories offer detailed insight into the process of hydrate nucleation. Cooperative organization is observed to lead to methane adsorption onto planar faces of water and the fluctuating formation and dissociation of early hydrate cages. The early cages are mostly face-sharing partial small cages, favoring structure II; however, larger cages subsequently appear as a result of steric constraints and thermodynamic preference for the structure I phase. The resulting structure after nucleation and growth is a combination of the two dominant types of hydrate crystals (structure I and structure II), which are linked by uncommon 5 12 6 3 cages that facilitate structure coexistence without an energetically unfavorable interface.

625 citations

Journal ArticleDOI
TL;DR: Raman spectra of clathrate hydrate guest molecules are presented for three known structures (I (sI), II (sII), and H (sH)) in the following systems:
Abstract: Raman spectra of clathrate hydrate guest molecules are presented for three known structures (I (sI), II (sII), and H (sH)) in the following systems: CH4 (sI), CO2 (sI), C3H8 (sII), CH4 + CO2 (sI), CD4 + C3H8 (sII), CH4 + N2 (sI), CH4 + THF-d8 (sII), and CH4 + C7D14 (sH). Relative occupancy of CH4 in the large and small cavities of sI were determined by deconvoluting the ν1 symmetric bands, resulting in hydration numbers of 6.04 ± 0.03. The frequency of the ν1 bands for CH4 in structures I, II, and H differ statistically, so that Raman spectroscopy is a potential tool to identify hydrate crystal structure. Hydrate guest compositions were also measured for two vapor compositions of the CH4 + CO2 system, and they compared favorably with predictions. The large cavities were measured to be almost fully occupied by CH4 and CO2, whereas only a small fraction of the small cavities are occupied by CH4. No CO2 was found in the small cavities. Hydration numbers from 7.27 to 7.45 were calculated for the mixed hydrate.

550 citations

Journal ArticleDOI
TL;DR: In this paper, a hydrate formation mechanism is reviewed to suggest the new inhibition method and two apparatuses are presented for the best kinetic inhibitors among approximately 1500 chemicals, including poly(N-vinylcaprolactam) (PVCAP), poly(n)-vinylpyrrolidone (N-PVC), N-dimethylaminoethyl-methacrylate (VC-713), and N-vinYL-poly(nvinylpolymorphic acid) (VP/VC).

374 citations

Journal ArticleDOI
TL;DR: The state of the art in gas hydrate research is leading to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties.
Abstract: Fundamental understanding of gas hydrate formation and decomposition processes is critical in many energy and environmental areas and has special importance in flow assurance for the oil and gas industry. These areas represent the core of gas hydrate applications, which, albeit widely studied, are still developing as growing fields of research. Discovering the molecular pathways and chemical and physical concepts underlying gas hydrate formation potentially can lead us beyond flowline blockage prevention strategies toward advancing new technological solutions for fuel storage and transportation, safely producing a new energy resource from natural deposits of gas hydrates in oceanic and arctic sediments, and potentially facilitating effective desalination of seawater. The state of the art in gas hydrate research is leading us to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties.

372 citations

Journal ArticleDOI
TL;DR: In this article, the authors highlight the recent hydrate literature focusing on the thermodynamics, kinetics, structural properties, particle properties, rheological properties, and molecular mechanisms of formation.
Abstract: Clathrate hydrates have steadily emerged as an important field in the areas of flow assurance, energy storage and resource, and environment. To better understand the role of hydrates in all of these areas, knowledge developed in laboratory experiments must be effectively transferred to address the challenges related to hydrate formation, dissociation, agglomeration, and stability. This paper highlights the recent hydrate literature focusing on the thermodynamics, kinetics, structural properties, particle properties, rheological properties, and molecular mechanisms of formation. The foundation for continued understanding and development of hydrates in engineering practice will rely on laboratory measurements utilizing traditional and innovative tools capable of probing time-dependent and time-independent properties.

365 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The presented lipid FF is developed and applied to phospholipid bilayers with both choline and ethanolamine containing head groups and with both saturated and unsaturated aliphatic chains and is anticipated to be of utility for simulations of pure lipid systems as well as heterogeneous systems including membrane proteins.
Abstract: A significant modification to the additive all-atom CHARMM lipid force field (FF) is developed and applied to phospholipid bilayers with both choline and ethanolamine containing head groups and with both saturated and unsaturated aliphatic chains. Motivated by the current CHARMM lipid FF (C27 and C27r) systematically yielding values of the surface area per lipid that are smaller than experimental estimates and gel-like structures of bilayers well above the gel transition temperature, selected torsional, Lennard-Jones and partial atomic charge parameters were modified by targeting both quantum mechanical (QM) and experimental data. QM calculations ranging from high-level ab initio calculations on small molecules to semiempirical QM studies on a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer in combination with experimental thermodynamic data were used as target data for parameter optimization. These changes were tested with simulations of pure bilayers at high hydration of the following six lipids: ...

3,489 citations

Journal ArticleDOI
TL;DR: It is shown that high-shear mixing of graphite in suitable stabilizing liquids results in large-scale exfoliation to give dispersions of graphene nanosheets in liquid volumes from hundreds of millilitres up to hundreds of litres and beyond.
Abstract: To progress from the laboratory to commercial applications, it will be necessary to develop industrially scalable methods to produce large quantities of defect-free graphene. Here we show that high-shear mixing of graphite in suitable stabilizing liquids results in large-scale exfoliation to give dispersions of graphene nanosheets. X-ray photoelectron spectroscopy and Raman spectroscopy show the exfoliated flakes to be unoxidized and free of basal-plane defects. We have developed a simple model that shows exfoliation to occur once the local shear rate exceeds 10(4) s(-1). By fully characterizing the scaling behaviour of the graphene production rate, we show that exfoliation can be achieved in liquid volumes from hundreds of millilitres up to hundreds of litres and beyond. The graphene produced by this method performs well in applications from composites to conductive coatings. This method can be applied to exfoliate BN, MoS2 and a range of other layered crystals.

1,973 citations

Journal ArticleDOI
TL;DR: The CHARMM-GUI Membrane Builder was expanded to automate the building process of heterogeneous lipid bilayers, with or without a protein and with support for up to 32 different lipid types, to test the efficacy of these new features.

1,242 citations