scispace - formally typeset
Search or ask a question
Author

Amaelle Landais

Bio: Amaelle Landais is an academic researcher from Université Paris-Saclay. The author has contributed to research in topics: Ice core & Glacial period. The author has an hindex of 51, co-authored 154 publications receiving 11915 citations. Previous affiliations of Amaelle Landais include Saint Petersburg State University & British Antarctic Survey.


Papers
More filters
Journal ArticleDOI
09 Sep 2004-Nature
TL;DR: An undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period, shows a slow decline in temperatures that marked the initiation of the last glacial period.
Abstract: High-resolution record of Northern Hemisphere climate extending into the last interglacial period

2,522 citations

Journal ArticleDOI
Carlo Barbante1, J. M. Barnola1, J. M. Barnola2, Silvia Becagli1, J. Beer3, J. Beer1, M. Bigler1, Claude F. Boutron2, Claude F. Boutron1, Thomas Blunier1, E. Castellano1, Olivier Cattani, Jérôme Chappellaz2, Jérôme Chappellaz1, Dorthe Dahl-Jensen1, Maxime Debret2, Barbara Delmonte, D. Dick, S. Falourd, Sérgio H. Faria1, Urs Federer1, Hubertus Fischer, Johannes Freitag, Andreas Frenzel, Diedrich Fritzsche, Felix Fundel, Paolo Gabrielli2, Vania Gaspari, Rainer Gersonde, Wolfgang Graf, D. Grigoriev4, Ilka Hamann, Margareta Hansson, George R. Hoffmann, Hutterli5, Philippe Huybrechts, Elisabeth Isaksson6, Sigfus J Johnsen, Jean Jouzel, M. Kaczmarska6, Torbjörn Karlin, Patrik R Kaufmann, S. Kipfstuhl, Mika Kohno, Fabrice Lambert, Astrid Lambrecht, Amaelle Landais, Gunther Lawer, Markus Leuenberger, Geneviève C Littot5, L. Loulergue2, Dieter Lüthi, Valter Maggi, F. Marino, Valérie Masson-Delmotte, Hanno Meyer, Heinrich Miller, Robert Mulvaney5, Biancamaria Narcisi, Johannes Oerlemans, H. Oerter, Frédéric Parrenin2, J. R. Petit2, Grant M. Raisbeck, Dominique Raynaud2, Regine Röthlisberger5, U. Ruth, Oleg Rybak, Mirko Severi, Jochen Schmitt, Jakob Schwander, Urs Siegenthaler, M.-L. Siggaard-Andersen1, Renato Spahni, Jørgen Peder Steffensen1, Barbara Stenni7, Thomas F. Stocker, Jean-Louis Tison, Rita Traversi, Roberto Udisti, Fernando Valero-Delgado, M. R. van den Broeke, R. S. W. van de Wal, Dietmar Wagenbach, Anna Wegner, K. Weiler, Frank Wilhelms, Jan-Gunnar Winther6, Eric W. Wolff5 
09 Nov 2006-Nature
TL;DR: In this paper, a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records was presented.
Abstract: Precise knowledge of the phase relationship between climate changes in the two hemispheres is a key for understanding the Earth's climate dynamics. For the last glacial period, ice core studies1, 2 have revealed strong coupling of the largest millennial-scale warm events in Antarctica with the longest Dansgaard–Oeschger events in Greenland3, 4, 5 through the Atlantic meridional overturning circulation6, 7, 8. It has been unclear, however, whether the shorter Dansgaard–Oeschger events have counterparts in the shorter and less prominent Antarctic temperature variations, and whether these events are linked by the same mechanism. Here we present a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records. After methane synchronization with an ice core from North Greenland9, the oxygen isotope record from the Dronning Maud Land ice core shows a one-to-one coupling between all Antarctic warm events and Greenland Dansgaard–Oeschger events by the bipolar seesaw6. The amplitude of the Antarctic warm events is found to be linearly dependent on the duration of the concurrent stadial in the North, suggesting that they all result from a similar reduction in the meridional overturning circulation.

1,074 citations

Journal ArticleDOI
Dorthe Dahl-Jensen, Mary R. Albert1, Ala Aldahan2, Nobuhiko Azuma3, David Balslev-Clausen4, Matthias Baumgartner, Ann-Marie Berggren2, Matthias Bigler, Tobias Binder5, Thomas Blunier, J. C. Bourgeois6, Edward J. Brook7, Susanne L Buchardt4, Christo Buizert, Emilie Capron, Jérôme A Chappellaz8, J. Chung9, Henrik Clausen4, Ivana Cvijanovic4, Siwan M. Davies10, Peter D. Ditlevsen4, Olivier Eicher11, Hubertus Fischer11, David A. Fisher6, L. G. Fleet12, Gideon Gfeller11, Vasileios Gkinis4, Sivaprasad Gogineni13, Kumiko Goto-Azuma14, Aslak Grinsted4, H. Gudlaugsdottir15, Myriam Guillevic4, S. B. Hansen4, Martin Hansson16, Motohiro Hirabayashi14, S. Hong, S. D. Hur9, Philippe Huybrechts17, Christine S. Hvidberg4, Yoshinori Iizuka16, Theo M. Jenk4, Sigfus J Johnsen4, Tyler R. Jones18, Jean Jouzel, Nanna B. Karlsson4, Kenji Kawamura14, Kaitlin M. Keegan1, E. Kettner4, Sepp Kipfstuhl19, Helle Astrid Kjær4, Michelle Koutnik20, Takayuki Kuramoto14, Peter Köhler19, Thomas Laepple19, Amaelle Landais, Peter L. Langen4, L. B. Larsen4, Daiana Leuenberger11, Markus Leuenberger, Carl Leuschen13, J. Li13, Vladimir Ya. Lipenkov21, Patricia Martinerie8, Olivia J. Maselli22, Valérie Masson-Delmotte, Joseph R. McConnell22, Heinrich Miller19, Olivia Mini11, A. Miyamoto23, M. Montagnat-Rentier24, Robert Mulvaney12, Raimund Muscheler, Anais Orsi25, John Paden13, Christian Panton4, Frank Pattyn26, Jean-Robert Petit8, K. Pol, Trevor Popp, G. Possnert, Frédéric Prié, M. Prokopiou, Aurélien Quiquet24, Sune Olander Rasmussen4, Dominique Raynaud8, J. Ren, C. Reutenauer4, Catherine Ritz8, Thomas Röckmann, Jean Rosen7, Mauro Rubino, Oleg Rybak19, Denis Samyn2, Célia Sapart27, Adrian Schilt28, A. Schmidt4, Jakob Schwander11, Simon Schüpbach, Inger K Seierstad, Jeffrey P. Severinghaus25, Simon G. Sheldon4, Sebastian B. Simonsen4, Jesper Sjolte, Anne M. Solgaard4, Todd Sowers, Peter Sperlich, Hans Christian Steen-Larsen29, Konrad Steffen30, J. P. Steffensen31, Daniel Steinhage19, Thomas F. Stocker, C. Stowasser18, A. S. Sturevik32, W. T. Sturges33, Arny E. Sveinbjörnsdottir29, A. Svensson30, Jean-Louis Tison31, J. Uetake34, Paul Vallelonga, R. S. W. van de Wal19, G. van der Wel11, Bruce H. Vaughn4, Bo Møllesøe Vinther2, E. Waddington35, Anna Wegner, Ilka Weikusat19, James W. C. White26, Frank Wilhelms19, Mai Winstrup4, Emmanuel Witrant, Eric W. Wolff11, C. Xiao, J. Zheng36 
24 Jan 2013-Nature
TL;DR: In this paper, the North Greenland Eemian Ice Drilling (NEEM) ice core was extracted from folded Greenland ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records.
Abstract: Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 +/- 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 +/- 250 metres, reaching surface elevations 122,000 years ago of 130 +/- 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.

546 citations

Dorthe Dahl-Jensen, Mary R. Albert, Ala Aldahan, Nobuhiko Azuma, David Balslev-Clausen, Matthias Baumgartner, Ann-Marie Berggren, Matthias Bigler, Tobias Binder, Thomas Blunier, J. C. Bourgeois, Edward J. Brook, Susanne L Buchardt, Christo Buizert, Emilie Capron, Jérôme A Chappellaz, J. Chung, Henrik Clausen, Ivana Cvijanovic, Siwan M. Davies, Peter D. Ditlevsen, Olivier Eicher, Hubertus Fischer, David A. Fisher, L. G. Fleet, Gideon Gfeller, Vasileios Gkinis, Sivaprasad Gogineni, Kumiko Goto-Azuma, Aslak Grinsted, H. Gudlaugsdottir, Myriam Guillevic, S. B. Hansen, Martin Hansson, Motohiro Hirabayashi, S. Hong, S. D. Hur, Philippe Huybrechts, Christine S. Hvidberg, Yoshinori Iizuka, Theo M. Jenk, Sigfus J Johnsen, Tyler R. Jones, Jean Jouzel, Nanna B. Karlsson, Kenji Kawamura, Kaitlin M. Keegan, E. Kettner, Sepp Kipfstuhl, Helle Astrid Kjær, Michelle Koutnik, Takayuki Kuramoto, Peter Köhler, Thomas Laepple, Amaelle Landais, Peter L. Langen, L. B. Larsen, Daiana Leuenberger, Markus Leuenberger, Carl Leuschen, J. Li, Vladimir Ya. Lipenkov, Patricia Martinerie, Olivia J. Maselli, Valérie Masson-Delmotte, Joseph R. McConnell, Heinrich Miller, Olivia Mini, A. Miyamoto, M. Montagnat-Rentier, Robert Mulvaney, Raimund Muscheler, Anais Orsi, John Paden, Christian Panton, Frank Pattyn, Jean-Robert Petit, K. Pol, Trevor Popp, G. Possnert, Frédéric Prié, M. Prokopiou, Aurélien Quiquet, Sune Olander Rasmussen, Dominique Raynaud, J. Ren, C. Reutenauer, Catherine Ritz, Thomas Röckmann, Jean Rosen, Mauro Rubino, Oleg Rybak, Denis Samyn, Célia Sapart, Adrian Schilt, A. Schmidt, Jakob Schwander, Simon Schüpbach, Inger K Seierstad, Jeffrey P. Severinghaus, Simon G. Sheldon, Sebastian B. Simonsen, Jesper Sjolte, Anne M. Solgaard, Todd Sowers, Peter Sperlich, Hans Christian Steen-Larsen, Konrad Steffen, J. P. Steffensen, Daniel Steinhage, Thomas F. Stocker, C. Stowasser, A. S. Sturevik, W. T. Sturges, Arny E. Sveinbjörnsdottir, A. Svensson, Jean-Louis Tison, J. Uetake, Paul Vallelonga, R. S. W. van de Wal, G. van der Wel, Bruce H. Vaughn, Bo Møllesøe Vinther, E. Waddington, Anna Wegner, Ilka Weikusat, James W. C. White, Frank Wilhelms, Mai Winstrup, Emmanuel Witrant, Eric W. Wolff, C. Xiao, J. Zheng, N Community 
01 Jan 2013
TL;DR: The new North Greenland Eemian Ice Drilling (‘NEEM’) ice core is presented and shows only a modest ice-sheet response to the strong warming in the early Eemians, which was probably driven by the decreasing summer insolation.
Abstract: Efforts to extract a Greenland ice core with a complete record of the Eemian interglacial (130,000 to 115,000 years ago) have until now been unsuccessful. The response of the Greenland ice sheet to the warmer-than-present climate of the Eemian has thus remained unclear. Here we present the new North Greenland Eemian Ice Drilling ('NEEM') ice core and show only a modest ice-sheet response to the strong warming in the early Eemian. We reconstructed the Eemian record from folded ice using globally homogeneous parameters known from dated Greenland and Antarctic ice-core records. On the basis of water stable isotopes, NEEM surface temperatures after the onset of the Eemian (126,000 years ago) peaked at 8 +/- 4 degrees Celsius above the mean of the past millennium, followed by a gradual cooling that was probably driven by the decreasing summer insolation. Between 128,000 and 122,000 years ago, the thickness of the northwest Greenland ice sheet decreased by 400 +/- 250 metres, reaching surface elevations 122,000 years ago of 130 +/- 300 metres lower than the present. Extensive surface melt occurred at the NEEM site during the Eemian, a phenomenon witnessed when melt layers formed again at NEEM during the exceptional heat of July 2012. With additional warming, surface melt might become more common in the future.

451 citations

Journal ArticleDOI
TL;DR: The Antarctic Ice Core Chronology 2012 (AICC2012) as discussed by the authors is a new and coherent timescale developed for four Antarctic ice cores, namely Vostok, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML) and Talos Dome (TALDICE), alongside the Greenlandic NGRIP record.
Abstract: . The deep polar ice cores provide reference records commonly employed in global correlation of past climate events. However, temporal divergences reaching up to several thousand years (ka) exist between ice cores over the last climatic cycle. In this context, we are hereby introducing the Antarctic Ice Core Chronology 2012 (AICC2012), a new and coherent timescale developed for four Antarctic ice cores, namely Vostok, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML) and Talos Dome (TALDICE), alongside the Greenlandic NGRIP record. The AICC2012 timescale has been constructed using the Bayesian tool Datice (Lemieux-Dudon et al., 2010) that combines glaciological inputs and data constraints, including a wide range of relative and absolute gas and ice stratigraphic markers. We focus here on the last 120 ka, whereas the companion paper by Bazin et al. (2013) focuses on the interval 120–800 ka. Compared to previous timescales, AICC2012 presents an improved timing for the last glacial inception, respecting the glaciological constraints of all analyzed records. Moreover, with the addition of numerous new stratigraphic markers and improved calculation of the lock-in depth (LID) based on δ15N data employed as the Datice background scenario, the AICC2012 presents a slightly improved timing for the bipolar sequence of events over Marine Isotope Stage 3 associated with the seesaw mechanism, with maximum differences of about 600 yr with respect to the previous Datice-derived chronology of Lemieux-Dudon et al. (2010), hereafter denoted LD2010. Our improved scenario confirms the regional differences for the millennial scale variability over the last glacial period: while the EDC isotopic record (events of triangular shape) displays peaks roughly at the same time as the NGRIP abrupt isotopic increases, the EDML isotopic record (events characterized by broader peaks or even extended periods of high isotope values) reached the isotopic maximum several centuries before. It is expected that the future contribution of both other long ice core records and other types of chronological constraints to the Datice tool will lead to further refinements in the ice core chronologies beyond the AICC2012 chronology. For the time being however, we recommend that AICC2012 be used as the preferred chronology for the Vostok, EDC, EDML and TALDICE ice core records, both over the last glacial cycle (this study), and beyond (following Bazin et al., 2013). The ages for NGRIP in AICC2012 are virtually identical to those of GICC05 for the last 60.2 ka, whereas the ages beyond are independent of those in GICC05modelext (as in the construction of AICC2012, the GICC05modelext was included only via the background scenarios and not as age markers). As such, where issues of phasing between Antarctic records included in AICC2012 and NGRIP are involved, the NGRIP ages in AICC2012 should therefore be taken to avoid introducing false offsets. However for issues involving only Greenland ice cores, there is not yet a strong basis to recommend superseding GICC05modelext as the recommended age scale for Greenland ice cores.

418 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP.
Abstract: Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.

2,800 citations

Journal ArticleDOI
07 Aug 2009-Science
TL;DR: The responses of the Northern and Southern Hemispheres differed significantly, which reveals how the evolution of specific ice sheets affected sea level and provides insight into how insolation controlled the deglaciation.
Abstract: We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ~14.5 ka.

2,691 citations

Journal ArticleDOI
09 Sep 2004-Nature
TL;DR: An undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period, shows a slow decline in temperatures that marked the initiation of the last glacial period.
Abstract: High-resolution record of Northern Hemisphere climate extending into the last interglacial period

2,522 citations

Journal ArticleDOI
24 Apr 2009-Science
TL;DR: What is known and what is needed to develop a holistic understanding of the role of fire in the Earth system are reviewed, particularly in view of the pervasive impact of fires and the likelihood that they will become increasingly difficult to control as climate changes.
Abstract: Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

2,365 citations

Journal ArticleDOI
06 May 2005-Science
TL;DR: A 5-year-resolution absolute-dated oxygen isotope record from Dongge Cave, southern China, provides a continuous history of the Asian monsoon over the past 9000 years, and shows that some, but not all, of the monsoon variability at these frequencies results from changes in solar output.
Abstract: A 5-year-resolution absolute-dated oxygen isotope record from Dongge Cave, southern China, provides a continuous history of the Asian monsoon over the past 9000 years. Although the record broadly follows summer insolation, it is punctuated by eight weak monsoon events lasting approximately 1 to 5 centuries. One correlates with the "8200-year" event, another with the collapse of the Chinese Neolithic culture, and most with North Atlantic ice-rafting events. Cross-correlation of the decadal- to centennial-scale monsoon record with the atmospheric carbon-14 record shows that some, but not all, of the monsoon variability at these frequencies results from changes in solar output.

2,139 citations